Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 27(4): 731-738, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28081356

RESUMEN

A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.


Asunto(s)
Antiinfecciosos/farmacología , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plata/química , Zingiberales/química , Animales , Antiinfecciosos/toxicidad , Bacterias/efectos de los fármacos , Línea Celular/efectos de los fármacos , Dispersión Dinámica de Luz/métodos , Hongos/efectos de los fármacos , Ensayo de Materiales/métodos , Nanopartículas del Metal/ultraestructura , Ratones , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión/métodos , Espectrofotometría Ultravioleta/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía de Absorción de Rayos X/métodos , Difracción de Rayos X/métodos
2.
Mater Sci Eng C Mater Biol Appl ; 59: 702-709, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26652424

RESUMEN

Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH.


Asunto(s)
Betaína , Materiales Biocompatibles Revestidos , Calor , Nanopartículas de Magnetita/química , Ensayo de Materiales , Ácido Oléico , Animales , Betaína/química , Betaína/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Coloides , Células HeLa , Humanos , Ratones , Ácido Oléico/química , Ácido Oléico/farmacología
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 1175-80, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25456659

RESUMEN

Intracellular synthesis of silver nanoparticles (AgNPs) using Rhodococcus spp. is demonstrated. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier trans-form infrared spectroscopy, and transmission electron microscopy. Transmission electron microscopy study of microorganisms' revealed synthesis of nanoparticle was occurring inside the cell, in the cytoplasm. AgNPs ranged from 5 to 50 nm. Formed nanoparticles were stable in the colloidal solution due to presence of proteins on the surface. AgNPs showed excellent bactericidal and bacteriostatic activity against pathogenic microorganisms.


Asunto(s)
Actinobacteria/metabolismo , Antiinfecciosos/farmacología , Espacio Intracelular/metabolismo , Nanopartículas del Metal/química , Plata/farmacología , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Espectrometría por Rayos X , Espectrofotometría Ultravioleta
4.
Dalton Trans ; 43(46): 17343-51, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25321385

RESUMEN

Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Calor , Magnetismo , Nanopartículas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular , Quitosano/síntesis química , Células HeLa , Humanos , Células MCF-7 , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier
5.
Mater Sci Eng C Mater Biol Appl ; 42: 637-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25063164

RESUMEN

Core-shell structures with magnetic core and metal/polymer shell provide a new opportunity for constructing highly efficient mediator for magnetic fluid hyperthermia. Herein, a facile method is described for the synthesis of superparamagnetic LSMO@Pluronic F127 core-shell nanoparticles. Initially, the surface of the LSMO nanoparticles is functionalized with oleic acid and the polymeric shell formation is achieved through hydrophobic interactions with oleic acid. Each step is optimized to get good dispersion and less aggregation. This methodology results into core-shell formation, of average diameter less than 40 nm, which was stable under physiological conditions. After making a core-shell formulation, a significant increase of specific absorption rate (up to 300%) has been achieved with variation of the magnetization (<20%). Furthermore, this high heating capacity can be maintained in various simulated physiological conditions. The observed specific absorption rate is almost higher than Fe3O4. MTT assay is used to evaluate the toxicity of bare and core-shell MNPs. The mechanism of cell death by necrosis and apoptosis is studied with sequential staining of acridine orange and ethidium bromide using fluorescence and confocal microscopy. The present work reports a facile method for the synthesis of core-shell structure which significantly improves SAR and biocompatibility of bare LSMO MNPs, indicating potential application for hyperthermia.


Asunto(s)
Materiales Biocompatibles/química , Coloides/química , Nanopartículas de Magnetita/química , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Coloides/toxicidad , Estabilidad de Medicamentos , Calor , Nanopartículas de Magnetita/toxicidad , Ensayo de Materiales , Ratones , Mitocondrias/metabolismo , Poloxámero
6.
Environ Sci Pollut Res Int ; 21(2): 1503-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23925656

RESUMEN

A novel approach for the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of AgNO3 using culture supernatant of phenol degraded broth is reported in this work. The synthesis was observed within 10 h, and AgNPs showed characteristic surface plasmon resonance around 410 nm. Spherical nanoparticles of size less than 30 nm were observed in transmission electron microscopy. X-ray diffraction pattern corresponding to 111, 200, 220, and 311 revealed the crystalline nature of the as-formed nanoparticles. It was found that the colloidal solution of AgNP suspensions exhibited excellent stability over a wide range of ionic strength, pH, and temperature. The effect of pH and ionic strength indicated that stabilization is due to electrostatic repulsion arising from the negative charge of the conjugate proteins. The AgNPs showed highly potent antimicrobial activity against Gram-positive, Gram-negative, and fungal microorganisms. The as-prepared AgNPs showed excellent catalytic activity in reduction of 4-nitrophenol to 4-aminophenol by NaBH4. By manufacturing magnetic alginate beads, the reusability of the AgNPs for the catalytic reaction has been demonstrated.


Asunto(s)
Antiinfecciosos/toxicidad , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Plata/metabolismo , Alginatos , Aminofenoles/química , Bacterias/efectos de los fármacos , Catálisis , Hongos/efectos de los fármacos , Ácido Glucurónico , Ácidos Hexurónicos , Nanopartículas del Metal/toxicidad , Microscopía Electrónica de Transmisión , Nitrofenoles/química , Plata/química , Plata/toxicidad , Difracción de Rayos X
7.
Colloids Surf B Biointerfaces ; 111: 264-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23838191

RESUMEN

Surface of La(0.7)Sr(0.3)MnO3 (LSMO) magnetic nanoparticles (MNPs) is functionalized with polymer (dextran) and their colloidal stability in various mediums is carried out. The influence of the surface functionalization of LSMO MNPs on their colloidal stability in physiological media is studied and correlated with their hyperthermia properties. Many studies have concerned the colloidal stability of MNPs coated with polymer, but their long-term stability when such complexes are exposed to physiological media is still not well understood. After zeta potential study, it is found that the dextran coating on MNPs improves the colloidal stability in water as well as in physiological media like PBS. The specific absorption rates (SAR) of these MNPs are found to be in 50-85 W/g in different concentrations of glucose and NaCl; and there values are suitable for hyperthermia treatment of cancer cells under AC magnetic field. After incorporation of MNPs up to 0.2-1mg/mL in 2 × 10(5)cells/mL (L929), the apoptosis and necrosis studies are carried out by acridine orange and ethidium bromide (AO and EB) staining and followed by visualization of microstructures under a fluorescence microscope. It is found that there are no morphological changes (i.e. no signs of cell rounding, bubble formation on the membrane and nuclear fragmentation) suggesting biocompatibility of dextran coated LSMO nanoparticles up to these concentrations.


Asunto(s)
Coloides/química , Medios de Cultivo/química , Hipertermia Inducida/métodos , Lantano/química , Compuestos de Manganeso/química , Manganeso/química , Nanopartículas/química , Óxidos/química , Polímeros/química , Estroncio/química , Naranja de Acridina , Animales , Dextranos/química , Etidio , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Campos Magnéticos , Ratones , Microscopía Fluorescente , Coloración y Etiquetado , Electricidad Estática
8.
Dalton Trans ; 42(27): 9966-75, 2013 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-23698554

RESUMEN

The green synthesis of supported noble metal nanoparticles is now the most exciting field for various catalytic applications as well as biomedical applications. In this paper we report a novel synthesis method of a polymer consisting of silver nanoparticles (AgNPs) using immobilized microorganisms in alginate beads. Microorganisms present in the polymer reduce aqueous AgNO3 to AgNPs which get trapped in the polymer to form Ag-Alginate (Ag-Alg) biohydrogel. The formed biohydrogel was characterized by UV-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. TEM analysis showed that less than 15 nm AgNPs formed in the polymer. The Ag-Alg biohydrogel exhibited efficient heterogeneous catalytic activity in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 in aqueous solution with durable reusability. Also this biohydrogel showed excellent antimicrobial activity against pathogenic bacteria (antibiotic resistant) and fungi. The described synthesis method of Ag-Alg biohydrogel can be considered robust, cost effective and eco-friendly. The formed highly catalytic active biohydrogel can be used as catalyst in industries and drinking water purification.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Actinobacteria/química , Actinobacteria/metabolismo , Alginatos/química , Alginatos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Catálisis , Relación Dosis-Respuesta a Droga , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata/química , Plata/farmacología , Relación Estructura-Actividad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA