Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 109(1): 113-23, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153708

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.


Asunto(s)
Magnesio/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Pliegue de Proteína , Cationes Bivalentes/química , Simulación por Computador , Escherichia coli , Humanos , Cinética , Cadenas de Markov , Pinzas Ópticas , Análisis Espectral , Termodinámica
2.
Proc Natl Acad Sci U S A ; 111(36): 13069-74, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157171

RESUMEN

Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.


Asunto(s)
Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Pinzas Ópticas , Pliegue de Proteína , Humanos , Cinética , Termodinámica
3.
Structure ; 21(10): 1812-21, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24012477

RESUMEN

EF-hand calcium sensors respond structurally to changes in intracellular Ca(2+) concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca(2+) binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.


Asunto(s)
Calcio/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Pinzas Ópticas , Unión Proteica , Replegamiento Proteico , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...