Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cerebellum ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721679

RESUMEN

This study aimed to identify quantitative biomarkers of motor function for cerebellar ataxia by evaluating gait and postural control using an RGB-depth camera-based motion analysis system. In 28 patients with degenerative cerebellar ataxia and 33 age- and sex-matched healthy controls, motor tasks (short-distance walk, closed feet stance, and stepping in place) were selected from a previously reported protocol, and scanned using Kinect V2 and customized software. The Clinical Assessment Scale for the Assessment and Rating of Ataxia (SARA) was also evaluated. Compared with the normal control group, the cerebellar ataxia group had slower gait speed and shorter step lengths, increased step width, and mediolateral trunk sway in the walk test (all P < 0.001). Lateral sway increased in the stance test in the ataxia group (P < 0.001). When stepping in place, the ataxia group showed higher arrhythmicity of stepping and increased stance time (P < 0.001). In the correlation analyses, the ataxia group showed a positive correlation between the total SARA score and arrhythmicity of stepping in place (r = 0.587, P = 0.001). SARA total score (r = 0.561, P = 0.002) and gait subscore (ρ = 0.556, P = 0.002) correlated with mediolateral truncal sway during walking. These results suggest that the RGB-depth camera-based motion analyses on mediolateral truncal sway during walking and arrhythmicity of stepping in place are useful digital motor biomarkers for the assessment of cerebellar ataxia, and could be utilized in future clinical trials.

2.
PLoS One ; 18(1): e0279697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701322

RESUMEN

Quantitative assessment of motor function is increasingly applied in fall risk stratification, diagnosis, and disease monitoring of neuro-geriatric disorders of balance and gait. Its broad application, however, demands for low-cost and easy to use solutions that facilitate high-quality assessment outside laboratory settings. In this study, we validated in 30 healthy adults (12 female, age: 32.5 [22 - 62] years) the performance and accuracy of the latest generation of the Microsoft RGB-D camera, i.e., Azure Kinect (AK), in tracking body motion and providing estimates of clinical measures that characterise static posture, postural transitions, and locomotor function. The accuracy and repeatability of AK recordings was validated with a clinical reference standard multi-camera motion capture system (Qualisys) and compared to its predecessor Kinect version 2 (K2). Motion signal quality was evaluated by Pearson's correlation and signal-to-noise ratios while the accuracy of estimated clinical parameters was described by absolute and relative agreement based on intraclass correlation coefficients. The accuracy of AK-based body motion signals was moderate to excellent (RMSE 89 to 20 mm) and depended on the dimension of motion (highest for anterior-posterior dimension), the body region (highest for wrists and elbows, lowest for ankles and feet), and the specific motor task (highest for stand up and sit down, lowest for quiet standing). Most derived clinical parameters showed good to excellent accuracy (r .84 to .99) and repeatability (ICC(1,1) .55 to .94). The overall performance and limitations of body tracking by AK were comparable to its predecessor K2 in a cohort of young healthy adults. The observed accuracy and repeatability of AK-based evaluation of motor function indicate the potential for a broad application of high-quality and long-term monitoring of balance and gait in different non-specialised environments such as medical practices, nursing homes or community centres.


Asunto(s)
Articulación del Codo , Programas Informáticos , Adulto , Humanos , Femenino , Anciano , Postura , Movimiento (Física) , Marcha , Fenómenos Biomecánicos , Reproducibilidad de los Resultados
3.
Artículo en Inglés | MEDLINE | ID: mdl-36554871

RESUMEN

BACKGROUND: Instrumental motion analysis constitutes a promising development in the assessment of motor function in clinical populations affected by movement disorders. To foster implementation and facilitate interpretation of respective outcomes, we aimed to establish normative data of healthy subjects for a markerless RGB-Depth camera-based motion analysis system and to illustrate their use. METHODS: We recorded 133 healthy adults (56% female) aged 20 to 60 years with an RGB-Depth camera-based motion analysis system. Forty-three spatiotemporal parameters were extracted from six short, standardized motor tasks-including three gait tasks, stepping in place, standing-up and sitting down, and a postural control task. Associations with confounding factors, height, weight, age, and sex were modelled using a predictive linear regression approach. A z-score normalization approach was provided to improve usability of the data. RESULTS: We reported descriptive statistics for each spatiotemporal parameter (mean, standard deviation, coefficient of variation, quartiles). Robust confounding associations emerged for step length and step width in comfortable speed gait only. Accessible normative data usage was lastly exemplified with recordings from one randomly selected individual with multiple sclerosis. CONCLUSION: We provided normative data for an RGB depth camera-based motion analysis system covering broad aspects of motor capacity.


Asunto(s)
Marcha , Trastornos del Movimiento , Adulto , Humanos , Femenino , Masculino , Movimiento (Física) , Voluntarios Sanos
4.
Sci Rep ; 12(1): 7670, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538115

RESUMEN

Motor signs such as dyspraxia and abnormal gait are characteristic features of autism spectrum disorder (ASD). However, motor behavior in adults with ASD has scarcely been quantitatively characterized. In this pilot study, we aim to quantitatively examine motor signature of adults with ASD without intellectual impairment using marker-less visual-perceptive motion capture. 82 individuals (37 ASD and 45 healthy controls, HC) with an IQ > 85 and aged 18 to 65 years performed nine movement tasks and were filmed by a 3D-infrared camera. Anatomical models were quantified via custom-made software and resulting kinematic parameters were compared between individuals with ASD and HCs. Furthermore, the association between specific motor behaviour and severity of autistic symptoms (Autism Diagnostic Observation Schedule 2, Autism Spectrum Quotient) was explored. Adults with ASD showed a greater mediolateral deviation while walking, greater sway during normal, tandem and single leg stance, a reduced walking speed and cadence, a greater arrhythmicity during jumping jack tasks and an impaired manual dexterity during finger tapping tasks (p < 0.05 and |D|> 0.48) compared to HC. Furthermore, in the ASD group, some of these parameters correlated moderately to severity of ASD symptoms. Adults with ASD seem to display a specific motor signature in this disorder affecting movement timing and aspects of balance. The data appear to reinforce knowledge about motor signs reported in children and adolescents with ASD. Also, quantitative motor assessment via visual-perceptive computing may be a feasible instrument to detect subtle motor signs in ASD and perhaps suitable in the diagnosis of ASD in the future.


Asunto(s)
Apraxias , Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico , Niño , Marcha , Humanos , Proyectos Piloto
5.
BMC Res Notes ; 14(1): 329, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446098

RESUMEN

OBJECTIVE: Parkinson's disease is a common, age-related, neurodegenerative disease, affecting gait and other motor functions. Technological developments in consumer imaging are starting to provide high-quality, affordable tools for home-based diagnosis and monitoring. This pilot study aims to investigate whether a consumer depth camera can capture changes in gait features of Parkinson's patients. The dataset consisted of 19 patients (tested in both a practically defined OFF phase and ON phase) and 8 controls, who performed the "Timed-Up-and-Go" test multiple times while being recorded with the Microsoft Kinect V2 sensor. Camera-derived features were step length, average walking speed and mediolateral sway. Motor signs were assessed clinically using the Movement Disorder Society Unified Parkinson's Disease Rating Scale. RESULTS: We found significant group differences between patients and controls for step length and average walking speed, showing the ability to detect Parkinson's features. However, there were no differences between the ON and OFF medication state, so further developments are needed to allow for detection of small intra-individual changes in symptom severity.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Marcha , Humanos , Enfermedad de Parkinson/diagnóstico , Proyectos Piloto , Velocidad al Caminar
6.
EPMA J ; 12(1): 91-101, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33782636

RESUMEN

BACKGROUND: Quantification of motor performance has a promising role in personalized medicine by diagnosing and monitoring, e.g. neurodegenerative diseases or health problems related to aging. New motion assessment technologies can evolve into patient-centered eHealth applications on a global scale to support personalized healthcare as well as treatment of disease. However, uncertainty remains on the limits of generalizability of such data, which is relevant specifically for preventive or predictive applications, using normative datasets to screen for incipient disease manifestations or indicators of individual risks. OBJECTIVE: This study explored differences between healthy German and Japanese adults in the performance of a short set of six motor tests. METHODS: Six motor tasks related to gait and balance were recorded with a validated 3D camera system. Twenty-five healthy adults from Chiba, Japan, participated in this study and were matched for age, sex, and BMI to a sample of 25 healthy adults from Berlin, Germany. Recordings used the same technical setup and standard instructions and were supervised by the same experienced operator. Differences in motor performance were analyzed using multiple linear regressions models, adjusted for differences in body stature. RESULTS: From 23 presented parameters, five showed group-related differences after adjustment for height and weight (R 2 between .19 and .46, p<.05). Japanese adults transitioned faster between sitting and standing and used a smaller range of hand motion. In stepping-in-place, cadence was similar in both groups, but Japanese adults showed higher knee movement amplitudes. Body height was identified as relevant confounder (standardized beta >.5) for performance of short comfortable and maximum speed walks. For results of posturography, regression models did not reveal effects of group or body stature. CONCLUSIONS: Our results support the existence of a population-specific bias in motor function patterns in young healthy adults. This needs to be considered when motor function is assessed and used for clinical decisions, especially for personalized predictive and preventive medical purposes. The bias affected only the performance of specific items and parameters and is not fully explained by population-specific ethnic differences in body stature. It may be partially explained as cultural bias related to motor habits. Observed effects were small but are expected to be larger in a non-controlled cross-cultural application of motion assessment technologies with relevance for related algorithms that are being developed and used for data processing. In sum, the interpretation of individual data should be related to appropriate population-specific or even better personalized normative values to yield its full potential and avoid misinterpretation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00236-3.

7.
Sensors (Basel) ; 20(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977647

RESUMEN

Fluctuations of motor symptoms make clinical assessment in Parkinson's disease a complex task. New technologies aim to quantify motor symptoms, and their remote application holds potential for a closer monitoring of treatment effects. The focus of this study was to explore the potential of a stepping in place task using RGB-Depth (RGBD) camera technology to assess motor symptoms of people with Parkinson's disease. In total, 25 persons performed a 40 s stepping in place task in front of a single RGBD camera (Kinect for Xbox One) in up to two different therapeutic states. Eight kinematic parameters were derived from knee movements to describe features of hypokinesia, asymmetry, and arrhythmicity of stepping. To explore their potential clinical utility, these parameters were analyzed for their Spearman's Rho rank correlation to clinical ratings, and for intraindividual changes between treatment conditions using standard response mean and paired t-test. Test performance not only differed between ON and OFF treatment conditions, but showed moderate correlations to clinical ratings, specifically ratings of postural instability (pull test). Furthermore, the test elicited freezing in some subjects. Results suggest that this single standardized motor task is a promising candidate to assess an array of relevant motor symptoms of Parkinson's disease. The simple technical test setup would allow future use by patients themselves.


Asunto(s)
Movimiento , Enfermedad de Parkinson , Fenómenos Biomecánicos , Femenino , Humanos , Hipocinesia , Masculino , Enfermedad de Parkinson/diagnóstico , Grabación en Video
8.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878177

RESUMEN

Various gait parameters can be used to assess the risk of falling in older adults. However, the state-of-the-art systems used to quantify gait parameters often come with high costs as well as training and space requirements. Gait analysis systems, which use mobile and commercially available cameras, can be an easily available, marker-free alternative. In a study with 44 participants (age ≥ 65 years), gait patterns were analyzed with three different systems: a pressure sensitive walkway system (GAITRite-System, GS) as gold standard, Motognosis Labs Software using a Microsoft Kinect Sensor (MKS), and a smartphone camera-based application (SCA). Intertrial repeatability showed moderate to excellent results for MKS (ICC(1,1) 0.574 to 0.962) for almost all measured gait parameters and moderate reliability in SCA measures for gait speed (ICC(1,1) 0.526 to 0.535). All gait parameters of MKS showed a high level of agreement with GS (ICC(2,k) 0.811 to 0.981). Gait parameters extracted with SCA showed poor reliability. The tested gait analysis systems based on different camera systems are currently only partially able to capture valid gait parameters. If the underlying algorithms are adapted and camera technology is advancing, it is conceivable that these comparatively simple methods could be used for gait analysis.


Asunto(s)
Análisis de la Marcha/métodos , Marcha/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Análisis de la Marcha/instrumentación , Humanos , Masculino , Aplicaciones Móviles , Fotograbar , Reproducibilidad de los Resultados , Teléfono Inteligente
9.
Sci Rep ; 9(1): 16812, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727918

RESUMEN

Contactless measurements during the night by a 3-D-camera are less time-consuming in comparison to polysomnography because they do not require sophisticated wiring. However, it is not clear what might be the diagnostic benefit and accuracy of this technology. We investigated 59 persons simultaneously by polysomnography and 3-D-camera and visual perceptive computing (19 patients with restless legs syndrome (RLS), 21 patients with obstructive sleep apnea (OSA), and 19 healthy volunteers). There was a significant correlation between the apnea hypopnea index (AHI) measured by polysomnography and respiratory events measured with the 3-D-camera in OSA patients (r = 0.823; p < 0.001). The receiver operating characteristic curve yielded a sensitivity of 90% for OSA with a specificity of 71.4%. In RLS patients 72.8% of leg movements confirmed by polysomnography could be detected by 3-D-video and a significant moderate correlation was found between PLM measured by polysomnography and by the 3-D-camera (RLS: r = 0.654; p = 0.004). In total, 95.4% of the sleep epochs were correctly classified by the machine learning approach, but only 32.5% of awake epochs. Further studies should investigate, if this technique might be an alternative to home sleep testing in persons with an increased pre-test probability for OSA.


Asunto(s)
Polisomnografía/métodos , Síndrome de las Piernas Inquietas/diagnóstico , Síndromes de la Apnea del Sueño/diagnóstico , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad , Grabación en Video , Percepción Visual , Adulto Joven
10.
Front Neurol ; 9: 718, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210439

RESUMEN

Introduction: Brain atrophy is a widely accepted marker of disease severity with association to clinical disability in multiple sclerosis (MS). It is unclear to which extent this association reflects common age effects on both atrophy and function. Objective: To explore how functional performance in gait, upper extremities and cognition is associated with brain atrophy in patients with Clinically Isolated Syndrome (CIS) and relapsing-remitting MS (RRMS), controlling for effects of age and sex. Methods: In 27 patients with CIS, 59 with RRMS (EDSS ≤3) and 63 healthy controls (HC), 3T MRI were analyzed for T2 lesion count (T2C), volume (T2V) and brain volumes [normalized brain volume (NBV), gray matter volume (NGMV), white matter volume (NWMV), thalamic volume (NThalV)]. Functional performance was measured with short maximum walking speed (SMSW speed), 9-hole peg test (9HPT) and symbol digit modalities test (SDMT). Linear regression models were created for functional variables with stepwise inclusion of age, sex and MR imaging markers. Results: CIS differed from HC only in T2C and T2V. RRMS differed from HC in NBV, NGMV and NThalV, T2C and T2V, but not in NWMV. A strong association with age was seen in HC, CIS and RRMS groups for NBV (r = -0.5 to -0.6) and NGMV (r = -0.6 to -0.8). Associations with age were seen in HC and RRMS but not CIS for NThalV (r = -0.3; r = -0.5), T2C (rs = 0.3; rs = 0.2) and T2V (rs = 0.3; rs = 0.3). No effect of age was seen on NWMV. Correlations of functional performance with age in RRMS were seen for SMSW speed, 9HPTand SDMT (r = -0.27 to -0.46). Regression analyses yielded significant models only in the RRMS group for 9HPT, SMSW speed and EDSS. These included NBV, NGMV, NThalV, NWMV, logT2V, age and sex as predictors. NThalV was the only MRI variable predicting a functional measure (9HPTr) with a higher standardized beta than age and sex (R2 = 0.36, p < 1e-04). Conclusion: Thalamic atrophy was a stronger predictor of hand function (9HPT) in RRMS, than age and sex. This underlines the clinical relevance of thalamic atrophy and the relevance of hand function as a clinical marker even in mildly disabled patients.

11.
Front Aging Neurosci ; 10: 435, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30719002

RESUMEN

Background: Gait variability is an established marker of gait function that can be assessed using sensor-based approaches. In clinical settings, spatial constraints and patient condition impede the execution of longer distance walks for the recording of gait parameters. Turning paradigms are often used to overcome these constraints and commercial gait analysis systems algorithmically exclude turns for gait parameters calculations. We investigated the effect of turns in sensor-based assessment of gait variability. Methods: Continuous recordings from 31 patients with movement disorders (ataxia, essential tremor and Parkinson's disease) and 162 healthy elderly (HE) performing level walks including 180° turns were obtained using an inertial sensor system. Accuracy of the manufacturer's algorithm of turn-detection was verified by plotting stride time series. Strides before and after turn events were extracted and compared to respective average of all strides. Coefficient of variation (CoV) of stride length and stride time was calculated for entire set of strides, segments between turns and as cumulative values. Their variance and congruency was used to estimate the number of strides required to reliably assess the magnitude of stride variability. Results: Non-detection of turns in 5.8% of HE lead to falsely increased CoV for these individuals. Even after exclusion of these, strides before/after turns tended to be spatially shorter and temporally longer in all groups, contributing to an increase of CoV at group level and widening of confidence margins with increasing numbers of strides. This could be attenuated by a more generous turn excision as an alternative approach. Correlation analyses revealed excellent consistency for CoVs after at most 20 strides in all groups. Respective stride counts were even lower in patients using a more generous turn excision. Conclusion: Including turns to increase continuous walking distance in spatially confined settings does not necessarily improve the validity and reliability of gait variability measures. Specifically with gait pathology, perturbations of stride characteristics before/after algorithmically excised turns were observed that may increase gait variability with this paradigm. We conclude that shorter distance walks of around 15 strides suffice for reliable and valid recordings of gait variability in the groups studied here.

12.
PLoS One ; 12(12): e0189281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29244874

RESUMEN

BACKGROUND: Gait is often impaired in people with multiple sclerosis (PwMS), but detailed assessment of gait impairment in research and care remains challenging. In a previous pilot study we reported the feasibility of visual perceptive computing (VPC) for gait assessment in PwMS using the Short Maximum Speed Walk (SMSW), which assesses gait on recording distances confined to less than 4 meters. OBJECTIVE: To investigate the equivalence of SMSW to rater-based timed 25ft. walk (T25FW) in a large cohort of PwMS, and to investigate the association of SMSW-derived gait parameters with clinical disability, as well as subjective and objective gait impairment, in order to validate the SMSW as a quick and objective measure of clinical relevance possibly superior to T25FW. METHODS: 95 PwMS and 60 healthy controls (HC) performed the SMSW using a VPC system with Microsoft Kinect. All participants received two immediate retests to establish test-retest-reliability. Both PwMS and HC performed the T25FW. PwMS were rated according to the Expanded Disability Status Scale (EDSS) and answered the 12-item Multiple Sclerosis Walking Scale (MSWS-12) as a measure of self-perceived walking impairment. RESULTS: PwMS showed reduced average speed (p<0.001) and higher mediolateral deviation (p = 0.002) during SMSW than HC. Average speed was the most reliable SMSW parameter in PwMS and HC (intra-class correlation coefficient (ICC) in PwMS = 0.985, and in HC = 0.977). Average speed declined with age in PwMS and HC (r in PwMS = -0.648, and in HC = -0.452, both p<0.001). Correlation of SMSW average speed and T25FW speed was high in both groups (r in PwMS = 0.783, and in HC = 0.747, both p<0.001) and mean difference (0.0013 m/s) between methods was below smallest detectable change. Average speed correlated well with both clinical disability based on EDSS (r = -0.586, p<0.001) and self-perceived walking impairment based on MSWS-12 (r = -0.546, p<0.001). CONCLUSION: VPC-assessed walking parameters during SMSW can reliably detect gait disturbance in PwMS over very short distance. Specifically, maximum gait speed can be obtained with high accuracy in this simple test set-up. Cross-sectional associations with disability and self-perceived walking impairment support clinical relevance. Given its objectivity in a simple test set-up, SMSW is superior to T25FW.


Asunto(s)
Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Velocidad al Caminar , Adulto , Anciano , Estudios de Casos y Controles , Estudios Transversales , Evaluación de la Discapacidad , Femenino , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Reproducibilidad de los Resultados , Adulto Joven
13.
BMC Neurol ; 17(1): 10, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086828

RESUMEN

BACKGROUND: Physical activity (PA) is frequently restricted in people with multiple sclerosis (PwMS) and aiming to enhance PA is considered beneficial in this population. We here aimed to explore two standard methods (subjective plus objective) to assess PA reduction in PwMS and to describe the relation of PA to health-related quality of life (hrQoL). METHODS: PA was objectively measured over a 7-day period in 26 PwMS (EDSS 1.5-6.0) and 30 matched healthy controls (HC) using SenseWear mini® armband (SWAmini) and reported as step count, mean total and activity related energy expenditure (EE) as well as time spent in PA of different intensities. Measures of EE were also derived from self-assessment with IPAQ (International Physical Activity Questionnaire) long version, which additionally yielded information on the context of PA and a classification into subjects' PA levels. To explore the convergence between both types of assessment, IPAQ categories (low, moderate, high) were related to selected PA parameters from objective assessment using ANOVA. Group differences and associated effect sizes for all PA parameters as well as their relation to clinical and hrQoL measures were determined. RESULTS: Both, SWAmini and IPAQ assessment, captured differences in PA between PwMS and HC. IPAQ categories fit well with common cut-offs for step count (p = 0.002) and mean METs (p = 0.004) to determine PA levels with objective devices. Correlations between specifically matched pairs of IPAQ and SWAmini parameters ranged between r .288 and r .507. Concerning hrQoL, the lower limb mobility subscore was related to four PA measures, while a relation with patients' report of general contentment was only seen for one. CONCLUSIONS: Both methods of assessment seem applicable in PwMS and able to describe reductions in daily PA at group level. Whether they can be used to track individual effects of interventions to enhance PA levels needs further exploration. The relation of PA measures with hrQoL seen with lower limb mobility suggests lower limb function not only as a major target for intervention to increase PA but also as a possible surrogate for PA changes.


Asunto(s)
Ejercicio Físico/fisiología , Monitoreo Ambulatorio/métodos , Esclerosis Múltiple/fisiopatología , Calidad de Vida , Autoinforme , Acelerometría , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
PLoS One ; 11(11): e0166532, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861541

RESUMEN

BACKGROUND: The introduction of low cost optical 3D motion tracking sensors provides new options for effective quantification of motor dysfunction. OBJECTIVE: The present study aimed to evaluate the Kinect V2 sensor against a gold standard motion capture system with respect to accuracy of tracked landmark movements and accuracy and repeatability of derived clinical parameters. METHODS: Nineteen healthy subjects were concurrently recorded with a Kinect V2 sensor and an optical motion tracking system (Vicon). Six different movement tasks were recorded with 3D full-body kinematics from both systems. Tasks included walking in different conditions, balance and adaptive postural control. After temporal and spatial alignment, agreement of movements signals was described by Pearson's correlation coefficient and signal to noise ratios per dimension. From these movement signals, 45 clinical parameters were calculated, including ranges of motions, torso sway, movement velocities and cadence. Accuracy of parameters was described as absolute agreement, consistency agreement and limits of agreement. Intra-session reliability of 3 to 5 measurement repetitions was described as repeatability coefficient and standard error of measurement for each system. RESULTS: Accuracy of Kinect V2 landmark movements was moderate to excellent and depended on movement dimension, landmark location and performed task. Signal to noise ratio provided information about Kinect V2 landmark stability and indicated larger noise behaviour in feet and ankles. Most of the derived clinical parameters showed good to excellent absolute agreement (30 parameters showed ICC(3,1) > 0.7) and consistency (38 parameters showed r > 0.7) between both systems. CONCLUSION: Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to established marker- or wearable sensor based system. The Kinect V2 has the potential to be used as a reliable and valid clinical measurement tool.


Asunto(s)
Movimiento (Física) , Actividad Motora , Programas Informáticos , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Relación Señal-Ruido
15.
Mult Scler ; 22(12): 1596-1606, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26814201

RESUMEN

BACKGROUND: Multiple sclerosis (MS) patients frequently have postural control impairment but quantitative posturography is difficult to perform in clinical care. Recent technology facilitates new posturography approaches. OBJECTIVE: To evaluate construct validity of visual perceptive computing (VPC) for static posturography to study postural control in MS patients. METHODS: A total of 90 MS patients and 59 healthy controls (HCs) performed three stance tests: open, closed and tandem stance. Static posturography was performed using a VPC system with Microsoft Kinect. Clinical assessments included Expanded Disability Status Scale (EDSS), Timed-25-Foot-Walk, Short-Maximum-Speed-Walk and 12-item MS Walking Scale (MSWS-12) questionnaire. Reliability was assessed with intra-class correlation coefficients at retest. RESULTS: As a group, MS patients performed worse than HCs in all tests. The closed stance test showed best applicability and reliability. With closed eyes, in 36.7% of patients, the three-dimensional mean angular sway velocity (MSV-3D) was above HCs' 95th percentile. Higher MSV-3D was associated with decreased walking speed (p < 0.001); worse clinical scores, mainly attributable to the cerebellar functional system score (p < 0.001); and reflected in self-reported walking disability (MSWS-12, p < 0.001). CONCLUSION: Postural control can be reliably assessed by VPC-based static posturography in patients with MS. Abnormal postural control seems to predominantly reflect involvement of cerebellar circuits with impact on gait and walking disability.


Asunto(s)
Diagnóstico por Computador/instrumentación , Esclerosis Múltiple/fisiopatología , Equilibrio Postural/fisiología , Adulto , Fenómenos Biomecánicos , Estudios de Cohortes , Diagnóstico por Computador/métodos , Diagnóstico por Computador/normas , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Mov Disord Clin Pract ; 3(6): 587-595, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30363467

RESUMEN

BACKGROUND: Reviewers of dystonia rating scales agree on the need to assess symptoms more comprehensively. During the development of a quantitative dystonia assessment by video-perceptive computing, we devised a video-based severity ranking as a procedure to create a validation standard without the use of clinical scales. METHODS: Thirty-four patients with dystonia (17 with dystonic tremor) and 2 controls were assessed with clinical scales and video-recordings of 24 short movement tasks. Two to 4 raters compared multiple permutations of videos from 22 subjects, including 2 healthy controls, until a complete rank order was achieved. Inter-rater agreement was expressed as normalized Kendall tau distance. Spearman correlations of video rank order with clinical scales and self-rating were repeated for tremor/nontremor subgroups. RESULTS: Normalized Kendall tau distances were <0.3 for 15 items. The video rank order for sitting and head movements correlated with clinical scales for the whole group (rho 0.52-0.87) and in the subgroup without tremor. In the tremor subgroup such correlation was perceived in the 2 items involving sitting. Video rank order correlated with quality of life self-rating only in 1 item (arms held in front, palm down). CONCLUSIONS: The agreement of video rankings between raters is remarkable. The lack of correlation in the tremor subgroup in several items may be interpreted as tremor being considered in video comparisons but not in clinical scales. This supports video-based ranking as a more comprehensive rating of dystonia and as a possible validation instrument applicable in situations in which no reference standard is available.

17.
J Neuroeng Rehabil ; 11: 89, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24886525

RESUMEN

BACKGROUND: We investigated the applicability and feasibility of perceptive computing assisted gait analysis in multiple sclerosis (MS) patients using Microsoft Kinect™. To detect the maximum walking speed and the degree of spatial sway, we established a computerized and observer-independent measure, which we named Short Maximum Speed Walk (SMSW), and compared it to established clinical measures of gait disability in MS, namely the Expanded Disability Status Scale (EDSS) and the Timed 25-Foot Walk (T25FW). METHODS: Cross-sectional study of 22 MS patients (age mean ± SD 43 ± 9 years, 13 female) and 22 age and gender matched healthy control subjects (HC) (age 37 ± 11 years, 13 female). The disability level of each MS patient was graded using the EDSS (median 3.0, range 0.0-6.0). All subjects then performed the SMSW and the Timed 25-Foot Walk (T25FW). The SMSW comprised five gait parameters, which together assessed average walking speed and gait stability in different dimensions (left/right, up/down and 3D deviation). RESULTS: SMSW average walking speed was slower in MS patients (1.6 ± 0.3 m/sec) than in HC (1.8 ± 0.4 m/sec) (p = 0.005) and correlated well with EDSS (Spearman's Rho 0.676, p < 0.001). Furthermore, SMSW revealed higher left/right deviation in MS patients compared to HC. SMSW showed high recognition quality and retest-reliability (covariance 0.13 m/sec, ICC 0.965, p < 0.001). There was a significant correlation between SMSW average walking speed and T25FW (Pearson's R = -0.447, p = 0.042). CONCLUSION: Our data suggest that ambulation tests using Microsoft Kinect™ are feasible, well tolerated and can detect clinical gait disturbances in patients with MS. The retest-reliability was on par with the T25FW.


Asunto(s)
Evaluación de la Discapacidad , Trastornos Neurológicos de la Marcha/diagnóstico , Esclerosis Múltiple/complicaciones , Examen Neurológico/métodos , Adulto , Computadores , Estudios Transversales , Estudios de Factibilidad , Femenino , Marcha , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Examen Neurológico/instrumentación , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...