Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32916665

RESUMEN

After decades of study in humans and animal models, there remains a lack of consensus regarding how the action of electrical stimulation on neuronal and non-neuronal elements - e.g. neuropil, cell bodies, glial cells, etc. - leads to the therapeutic effects of neuromodulation therapies. To further our understanding of neuromodulation therapies, there is a critical need for novel methodological approaches using state-of-the-art neuroscience tools to study neuromodulation therapy in preclinical models of disease. In this manuscript we outline one such approach combining chronic behaving single-photon microendoscope recordings in a pathological mouse model with electrical stimulation of a common deep brain stimulation (DBS) target. We describe in detail the steps necessary to realize this approach, as well as discuss key considerations for extending this experimental paradigm to other DBS targets for different therapeutic indications. Additionally, we make recommendations from our experience on implementing and validating the required combination of procedures that includes: the induction of a pathological model (6-OHDA model of Parkinson's disease) through an injection procedure, the injection of the viral vector to induce GCaMP expression, the implantation of the GRIN lens and stimulation electrode, and the installation of a baseplate for mounting the microendoscope. We proactively identify unique data analysis confounds occurring due to the combination of electrical stimulation and optical recordings and outline an approach to address these confounds. In order to validate the technical feasibility of this unique combination of experimental methods, we present data to demonstrate that 1) despite the complex multifaceted surgical procedures, chronic optical recordings of hundreds of cells combined with stimulation is achievable over week long periods 2) this approach enables measurement of differences in DBS evoked neural activity between anesthetized and awake conditions and 3) this combination of techniques can be used to measure electrical stimulation induced changes in neural activity during behavior in a pathological mouse model. These findings are presented to underscore the feasibility and potential utility of minimally constrained optical recordings to elucidate the mechanisms of DBS therapies in animal models of disease.

2.
Front Neurosci ; 13: 176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881283

RESUMEN

The hippocampus, a structure essential for spatial navigation and memory undergoes anatomical and functional changes during chronic stress. Here, we investigate the effects of chronic stress on the ability of place cells to encode the neural representation of a linear track. To model physiological conditions of chronic stress on hippocampal function, transgenic mice expressing the genetically encoded calcium indicator GCaMP6f in CA1 pyramidal neurons were chronically administered with 40 µg/ml of cortisol for 8 weeks. Cortisol-treated mice exhibited symptoms typically observed during chronic stress, including diminished reward seeking behavior and reduced adrenal gland and spleen weights. In vivo imaging of hippocampal cellular activity during linear track running behavior revealed a reduced number of cells that could be recruited to encode spatial position, despite an unchanged overall number of active cells, in cortisol-treated mice. The properties of the remaining place cells that could be recruited to encode spatial information, however, was unperturbed. Bayesian decoders trained to estimate the mouse's position on the track using single neuron activity data demonstrated reduced performance in a cue richness-dependent fashion in cortisol-treated animals. The performance of decoders utilizing data from the entire neuronal ensemble was unaffected by cortisol treatment. Finally, to test the hypothesis that an antidepressant drug could prevent the effects of cortisol, we orally administered a group of mice with 10 mg/kg citalopram during cortisol administration. Citalopram prevented the cortisol-induced decrease in single-neuron decoder performance but failed to significantly prevent anhedonia and the cortisol-induced reduction in the proportion place cells. The dysfunction observed at the single-neuron level indicates that chronic stress may impair the ability of the hippocampus to encode individual neural representations of the mouse's spatial position, a function pivotal to forming an accurate navigational map of the mouse's external environment; however, the hippocampal ensemble as a whole is resilient to any cortisol-induced insults to single neuronal place cell function on the linear track.

3.
Front Neurosci ; 12: 496, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087590

RESUMEN

The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.

4.
J Neurosci Methods ; 291: 238-248, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28830724

RESUMEN

BACKGROUND: In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. NEW METHOD: We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. RESULTS: We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. COMPARISON WITH EXISTING METHODS: Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. CONCLUSION: Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation.


Asunto(s)
Corteza Cerebral/fisiología , Vectores Genéticos , Microscopía/instrumentación , Imagen Óptica/métodos , Técnicas de Sutura , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Calcio/metabolismo , Corteza Cerebral/citología , Craneotomía/métodos , Dependovirus/genética , Diseño de Equipo , Cabeza , Ratones Endogámicos C57BL , Microscopía/métodos , Miniaturización , Actividad Motora/fisiología , Neuronas/citología , Neuronas/fisiología , Imagen Óptica/instrumentación , Prótesis e Implantes , Cráneo/cirugía , Imagen de Colorante Sensible al Voltaje/instrumentación
5.
J Vis Exp ; (124)2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28654056

RESUMEN

In vivo circuit and cellular level functional imaging is a critical tool for understanding the brain in action. High resolution imaging of mouse cortical neurons with two-photon microscopy has provided unique insights into cortical structure, function and plasticity. However, these studies are limited to head fixed animals, greatly reducing the behavioral complexity available for study. In this paper, we describe a procedure for performing chronic fluorescence microscopy with cellular-resolution across multiple cortical layers in freely behaving mice. We used an integrated miniaturized fluorescence microscope paired with an implanted prism probe to simultaneously visualize and record the calcium dynamics of hundreds of neurons across multiple layers of the somatosensory cortex as the mouse engaged in a novel object exploration task, over several days. This technique can be adapted to other brain regions in different animal species for other behavioral paradigms.


Asunto(s)
Conducta Animal/fisiología , Calcio/fisiología , Microscopía Fluorescente/métodos , Neuroimagen/métodos , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Potenciales de Acción/fisiología , Animales , Ratones , Neuroimagen/instrumentación
6.
Front Neurosci ; 10: 53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973444

RESUMEN

Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114-349%], p < 10(-4); t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation.

7.
Cereb Cortex ; 26(2): 797-806, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25778344

RESUMEN

Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo Gamma/fisiología , Inhibición Neural/fisiología , Corteza Somatosensorial/citología , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Ritmo Gamma/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Dinámicas no Lineales , Técnicas de Placa-Clamp , Factores de Tiempo
8.
Cell ; 160(3): 516-27, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635459

RESUMEN

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.


Asunto(s)
Conducta Apetitiva , Conducta Consumatoria , Hipotálamo/fisiología , Animales , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Ratones , Motivación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Hormonas Hipofisarias/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
PLoS One ; 9(11): e112068, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25372144

RESUMEN

Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.


Asunto(s)
Región CA1 Hipocampal , Calcio/metabolismo , Agonistas de Receptores de GABA-A/farmacología , Imagen Molecular/métodos , Imagen Óptica/métodos , Células Piramidales , Piridinas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Ratones , Microscopía Fluorescente/métodos , Células Piramidales/citología , Células Piramidales/metabolismo , Zolpidem
10.
Proc Natl Acad Sci U S A ; 107(27): 12329-34, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20616090

RESUMEN

The brain contains an astonishing diversity of neurons, each expressing only one set of ion channels out of the billions of potential channel combinations. Simple organizing principles are required for us to make sense of this abundance of possibilities and wealth of related data. We suggest that energy minimization subject to functional constraints may be one such unifying principle. We compared the energy needed to produce action potentials singly and in trains for a wide range of channel densities and kinetic parameters and examined which combinations of parameters maximized spiking function while minimizing energetic cost. We confirmed these results for sodium channels using a dynamic current clamp in neocortical fast spiking interneurons. We find further evidence supporting this hypothesis in a wide range of other neurons from several species and conclude that the ion channels in these neurons minimize energy expenditure in their normal range of spiking.


Asunto(s)
Potenciales de Acción/fisiología , Metabolismo Energético , Canales Iónicos/fisiología , Neuronas/fisiología , Algoritmos , Animales , Encéfalo/citología , Simulación por Computador , Cinética , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio/fisiología , Sodio/metabolismo , Canales de Sodio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
11.
J Neurosci ; 30(6): 2150-9, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147542

RESUMEN

Neocortical networks are composed of diverse populations of cells that differ in their chemical content, electrophysiological characteristics, and connectivity. Gamma-frequency oscillatory activity of inhibitory subnetworks has been hypothesized to regulate information processing in the cortex as a whole. Inhibitory neurons in these subnetworks synchronize their firing and selectively innervate the perisomatic compartments of their target neurons, generating both tonic and rapidly fluctuating inhibition. How do different types of cortical neurons respond to changes in the level and structure of perisomatic inhibition? What accounts for response heterogeneity between cell types, and are these response properties fixed or flexible? To answer these questions, we use in vitro whole-cell recording and dynamic-clamp somatic current injection to study six distinct types of cortical neurons. We demonstrate that different types of neurons systematically vary in their receptiveness to fast changes in the structure of inhibition and the range over which changes in inhibitory tone affect their output. Using simple neuron models and model neuron hybrids (dynamic clamp), we determine which intrinsic differences between cell types lead to these variations in receptiveness. These results suggest important differences in the way cell types are affected by gamma-frequency inhibition, which may have important circuit level implications. Although intrinsic differences observed in vitro are useful for the elucidation of basic cellular properties and differences between cell types, we also investigate how the integrative properties of neurons are likely to be rapidly modulated in the context of active networks in vivo.


Asunto(s)
Neuronas/fisiología , Potenciales de Acción , Animales , Membrana Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Técnicas In Vitro , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Periodicidad , Células Piramidales/fisiología
12.
Brain Res ; 1265: 65-74, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19230830

RESUMEN

The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and has generated recent interest as a potential drug target for treating neurodegenerative disorders such as Alzheimer's disease (AD). The property of Ca(2+) permeation associated with alpha7 nAChR agonism may lead to Ca(2+)-dependent intracellular signaling that contribute to the procognitive and neuroprotective effects that have been described with this pharmacology. In this study, we investigated whether alpha7 nAChR agonism leads to increased phosphorylation of the inhibitory regulating amino acid residue Ser-9 on GSK3beta, a major kinase responsible for tau hyperphosphorylation in AD neuropathology. Immunohistochemical analysis revealed that the selective alpha7 agonist A-582941 increased S(9)-GSK3beta phosphorylation in mouse cingulate cortex and hippocampus that was not observed in alpha7 nAChR knock-out mice. A-582941 steady state exposure through continuous (2 wk) infusion also increased S(9)-GSK3beta phosphorylation in the hippocampus of Tg2576 (APP), as well as wild-type mice. Moreover, A-582941 continuous infusion decreased phosphorylation of tau in hippocampal CA3 Mossy fibers and spinal motoneurons in a hypothermia-induced tau hyperphosphorylation mouse model and AD double transgenic APP/tau mouse line, respectively. These studies demonstrate that inactivation of GSK3beta may be associated with alpha7 nAChR-induced signaling leading to attenuated tau hyperphosphorylation, raising the intriguing possibility that alpha7 nAChR agonism may have disease modifying benefit in the treatment of tauopathies, in particular AD.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/metabolismo , Piridazinas/farmacología , Pirroles/farmacología , Receptores Nicotínicos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Piridazinas/administración & dosificación , Pirroles/administración & dosificación , Receptores Nicotínicos/genética , Transducción de Señal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7 , Proteínas tau/genética
13.
CNS Neurosci Ther ; 14(1): 65-82, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18482100

RESUMEN

Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that alpha7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.


Asunto(s)
Cognición/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Piridazinas/farmacología , Pirroles/farmacología , Receptores Nicotínicos/fisiología , Animales , Humanos , Receptor Nicotínico de Acetilcolina alfa 7
14.
Neuropharmacology ; 50(5): 521-31, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16324724

RESUMEN

The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes fos/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de Dopamina D4/fisiología , Transducción de Señal/fisiología , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Benzamidas/farmacología , Bencimidazoles/farmacología , Recuento de Células/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Masculino , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/antagonistas & inhibidores , Factores de Tiempo
15.
J Child Psychol Psychiatry ; 44(1): 33-63, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12553412

RESUMEN

Researchers and clinicians are increasingly recognizing that psychological and psychiatric disorders are often developmentally progressive, and that diagnosis often represents a point along that progression that is defined largely by our abilities to detect symptoms. As a result, strategies that guide our searches for the root causes and etiologies of these disorders are beginning to change. This review describes interactions between genetics and experience that influence the development of psychopathologies. Following a discussion of normal brain development that highlights how specific cellular processes may be targeted by genetic or environmental factors, we focus on four disorders whose origins range from genetic (fragile X syndrome) to environmental (fetal alcohol syndrome) or a mixture of both factors (depression and schizophrenia). C.H. Waddington's canalization model (slightly modified) is used as a tool to conceptualize the interactive influences of genetics and experience in the development of these psychopathologies. Although this model was originally proposed to describe the 'canalizing' role of genetics in promoting normative development, it serves here to help visualize, for example, the effects of adverse (stressful) experience in the kindling model of depression, and the multiple etiologies that may underlie the development of schizophrenia. Waddington's model is also useful in understanding the canalizing influence of experience-based therapeutic approaches, which also likely bring about 'organic' changes in the brain. Finally, in light of increased evidence for the role of experience in the development and treatment of psychopathologies, we suggest that future strategies for identifying the underlying causes of these disorders be based less on the mechanisms of action of effective pharmacological treatments, and more on increased knowledge of the brain's cellular mechanisms of plastic change.


Asunto(s)
Encéfalo/fisiopatología , Acontecimientos que Cambian la Vida , Trastornos Mentales/fisiopatología , Astrocitos/patología , Encéfalo/patología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Humanos , Degeneración Nerviosa/patología , Neuroglía/patología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...