Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 150, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794051

RESUMEN

Currently licensed influenza vaccines focus immune responses on viral hemagglutinin (HA), while the other major surface glycoprotein neuraminidase (NA) is not tightly controlled in inactivated vaccine formulations despite evidence that anti-NA antibodies reduce clinical disease. We utilized a bicistronic self-amplifying mRNA (sa-mRNA) platform encoding both HA and NA from four seasonal influenza strains, creating a quadrivalent influenza vaccine. sa-mRNA vaccines encoding an NA component induced the production of NA-inhibiting antibodies and CD4+ T-cell responses in both monovalent and quadrivalent formulations. Including NA in the vaccine enabled cross-neutralization against antigenically drifted strains and provided greater protection than HA alone upon A(H3N2) challenge in ferrets. These results demonstrate that next-generation bicistronic sa-mRNA vaccines expressing HA and NA induce potent antibodies against both viral coat proteins, as well as vaccine-specific cell-mediated immunity. When formulated as a quadrivalent seasonal influenza vaccine, the sa-mRNA platform provides an opportunity to increase the breadth of protection through cross-neutralizing anti-NA antibodies.

3.
Mol Ther Methods Clin Dev ; 27: 195-205, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36320414

RESUMEN

Vaccines are the primary intervention against influenza. Currently licensed inactivated vaccines focus immunity on viral hemagglutinin (HA). Self-amplifying mRNA (sa-mRNA) vaccines offer an opportunity to generate immunity to multiple viral proteins, including additional neuraminidase (NA). This evaluation of a bicistronic approach for sa-mRNA vaccine development compared subgenomic promoter and internal ribosome entry site strategies and found consistent and balanced expression of both HA and NA proteins in transfected cells. In mice, sa-mRNA bicistronic A/H5N1 vaccines raised potent anti-HA and anti-NA neutralizing antibody responses and HA- or NA-specific CD4+ and CD8+ T cell responses. The addition of NA also boosted the cross-neutralizing response to heterologous A/H1N1. Similar immunogenicity results were obtained for bicistronic seasonal A/H3N2 and B/Yamagata vaccines. In ferrets, sa-mRNA bicistronic A/H1N1 vaccine fully protected lung from infection by homologous virus and showed significant reduction of viral load in upper respiratory tract, warranting further evaluation of sa-mRNA bicistronic vaccine in humans.

4.
Mol Ther Methods Clin Dev ; 25: 225-235, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35345593

RESUMEN

The spike (S) protein of SARS-CoV-2 plays a crucial role in cell entry, and the nucleocapsid (N) protein is highly conserved among human coronavirus homologs. For potentially broad effectiveness against both original virus and emerging variants, we developed Alphavirus-based self-amplifying mRNA (sa-mRNA) SARS-CoV-2 vaccines: an sa-mRNA S encoding a full-length S protein stabilized in a prefusion conformation and an sa-mRNA S-N co-expressing S and N proteins for the original virus. We show that these sa-mRNA SARS-CoV-2 vaccines raised potent neutralizing antibody responses in mice against not only the original virus but also the Alpha, Beta, Gamma, and Delta variants. sa-mRNA S vaccines against the Alpha and Beta variants also raised robust cross-reactive neutralizing antibody responses against their homologous viruses and heterologous variants. sa-mRNA S and sa-mRNA S-N vaccines elicited Th1-dominant, antigen-specific CD4+ T cell responses to S and N proteins and robust and broad CD8+ T cell responses to S protein. Hamsters immunized with either vaccine were fully protected from lung infection and showed significant reduction of viral load in upper respiratory tract. Our findings demonstrate that sa-mRNA SARS-CoV-2 vaccines are potent in animal models with potential to be highly effective against SARS-CoV-2 infection in humans.

5.
Vaccine ; 38(3): 578-587, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31679865

RESUMEN

OBJECTIVE: To assess the safety and immunogenicity of the MF59®-adjuvanted trivalent influenza vaccine (aTIV; Fluad®) compared with modified aTIV formulations. METHODS: A total of 196 subjects ≥ 65 years were randomized to receive7different formulations of vaccine containing a range of adjuvant and antigen dosesby single injection, or divided into two injections at a single time point. The primary study objective was to compare the serologic response of different formulations of aTIV containing increased amounts of adjuvant and antigen21 days after vaccination. Subjects were followed for immunogenicity and safety for one year. RESULTS: The highest immune response, as measured by hemagglutination inhibition (HI) assay, 3 weeks after vaccination was observed in subjects in Group 6 with GMT 382.2 (95% confidence interval [CI] 237.5 to 615.0), 552.3 (364.8 to 836.1), and 54.1 (36.9 to 79.4) against A/H1N1, A/H3N2, and B respectively. Rates of seroconversion were also generally highest in this treatment group: 75% (95% CI 55.1 to 89.3), 75% (55.1 to 89.3), and 42.9% (24.5 to 62.8), respectively, against A/H1N1, A/H3N2, and B strains. The highest incidence of solicited adverse events (AEs) was reported by subjects who received both the highest dosage of antigen in combination with the highest dosage of adjuvant at the same site: 67.9% and 57.1% in Groups 4 and 6, respectively. The majority of solicited AEs were mild to moderate in severity. The number of unsolicited AEs was similar across the different dosages. CONCLUSION: In this phase I trial of adults ≥ 65 years of age who received increased adjuvant and antigen dosages relative to the licensed aTIV, increased dosage of MF59 resulted in increased immunogenicity against all 3 components of seasonal influenza vaccine. The increase in immunogenicity was accompanied by an increase in the incidence of local reactogenicity.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos Virales/administración & dosificación , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/epidemiología , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Anciano , Anciano de 80 o más Años , Antígenos Virales/efectos adversos , Antígenos Virales/inmunología , Formas de Dosificación , Relación Dosis-Respuesta Inmunológica , Femenino , Alemania/epidemiología , Humanos , Inmunogenicidad Vacunal/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Masculino , Polisorbatos/efectos adversos , Método Simple Ciego , Escualeno/efectos adversos , Escualeno/inmunología
6.
J Pharm Sci ; 107(9): 2310-2314, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883663

RESUMEN

Adjuvants are required to enhance immune responses to typically poorly immunogenic recombinant antigens. Toll-like receptor agonists (TLRa) have been widely evaluated as adjuvants because they activate the innate immune system. Currently, licensed vaccines adjuvanted with TLRa include the TLR4 agonist monophosphoryl lipid, while additional TLRa are in clinical development. Unfortunately, naturally derived TLRa are often complex and heterogeneous entities, which brings formulation challenges. Consequently, the use of synthetic small-molecule TLRa has significant advantages because they are well-defined discrete molecules, which can be chemically modified to modulate their physicochemical properties. We previously described the discovery of a family of TLR7 agonists based on a benzonaphthyridine scaffold. In addition, we described how Alum could be used to deliver these synthetic TLRa. An alternative adjuvant approach with enhanced potency over Alum are squalene containing oil-in-water emulsions, which have been included in licensed influenza vaccines, including Fluad (MF59 adjuvanted) and Pandemrix (AS03 adjuvanted). Here, we describe how to enable the co-delivery of a TLR7 agonist in a squalene-based oil-in-water emulsion, for adjuvant evaluation.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Inmunidad Celular/inmunología , Nanocápsulas/administración & dosificación , Animales , Estabilidad de Medicamentos , Femenino , Inmunidad Celular/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C
7.
PLoS One ; 13(4): e0194266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698406

RESUMEN

The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2-20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Reacciones Antígeno-Anticuerpo , Células CHO , Cricetinae , Cricetulus , Epítopos/inmunología , Femenino , Glicosilación , Cobayas , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Antígenos VIH/genética , Antígenos VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Polisorbatos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Escualeno/inmunología
8.
J Pharm Sci ; 107(6): 1577-1585, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29421216

RESUMEN

Adjuvants are necessary to enable vaccine development against a significant number of challenging pathogens for which effective vaccines are not available. We engineered a novel small-molecule immune potentiator, a benzonaphthyridine agonist targeting toll-like receptor 7 (TLR7), as a vaccine adjuvant. TLR7 agonist (TLR7a) was engineered to be adsorbed onto aluminum hydroxide (AlOH), and the resulting AlOH/TLR7a was evaluated as a vaccine adjuvant. AlOH/TLR7a exploits the flexibility of AlOH formulations, has an application in many vaccine candidates, and induced good efficacy and safety profiles against all tested antigens (bacterial- and viral-derived protein antigens, toxoids, glycoconjugates, and so forth) in many animal models, including nonhuman primates. In this article, we describe the outcome of the physicochemical characterization of AlOH/TLR7a. Reverse-phase ultra performance liquid chromatography, confocal microscopy, flow cytometry, zeta potential, and phosphophilicity assays were used as tools to demonstrate the association of TLR7a to AlOH and to characterize this novel formulation. Raman spectroscopy, nuclear magnetic resonance, and mass spectroscopy were also used to investigate the interaction between TLR7a and AlOH (data not shown). This pivotal work paved the way for AlOH/TLR7a to progress into the clinic for evaluation as an adjuvant platform for vaccines against challenging preventable diseases.


Asunto(s)
Adyuvantes Inmunológicos/química , Hidróxido de Aluminio/química , Naftiridinas/química , Receptor Toll-Like 7/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Adsorción , Hidróxido de Aluminio/administración & dosificación , Hidróxido de Aluminio/farmacología , Animales , Humanos , Naftiridinas/administración & dosificación , Naftiridinas/farmacología
9.
J Immunol ; 198(10): 4012-4024, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416600

RESUMEN

RNA-based vaccines have recently emerged as a promising alternative to the use of DNA-based and viral vector vaccines, in part because of the potential to simplify how vaccines are made and facilitate a rapid response to newly emerging infections. SAM vaccines are based on engineered self-amplifying mRNA (SAM) replicons encoding an Ag, and formulated with a synthetic delivery system, and they induce broad-based immune responses in preclinical animal models. In our study, in vivo imaging shows that after the immunization, SAM Ag expression has an initial gradual increase. Gene expression profiling in injection-site tissues from mice immunized with SAM-based vaccine revealed an early and robust induction of type I IFN and IFN-stimulated responses at the site of injection, concurrent with the preliminary reduced SAM Ag expression. This SAM vaccine-induced type I IFN response has the potential to provide an adjuvant effect on vaccine potency, or, conversely, it might establish a temporary state that limits the initial SAM-encoded Ag expression. To determine the role of the early type I IFN response, SAM vaccines were evaluated in IFN receptor knockout mice. Our data indicate that minimizing the early type I IFN responses may be a useful strategy to increase primary SAM expression and the resulting vaccine potency. RNA sequence modification, delivery optimization, or concurrent use of appropriate compounds might be some of the strategies to finalize this aim.


Asunto(s)
Diseño de Fármacos , Interferón Tipo I/inmunología , ARN Mensajero/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Antígenos/inmunología , Imagenología Tridimensional/métodos , Interferón Tipo I/biosíntesis , Ratones , ARN Mensajero/administración & dosificación , ARN Mensajero/fisiología , ARN Viral/inmunología , Virus Sincitiales Respiratorios/química , Virus Sincitiales Respiratorios/inmunología , Vacunación , Potencia de la Vacuna , Vacunas Virales/genética
10.
Adv Genet ; 89: 179-233, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25620012

RESUMEN

This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.


Asunto(s)
ARN Mensajero/administración & dosificación , Vacunas/administración & dosificación , Animales , Antígenos/genética , Electroporación , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , ARN Mensajero/efectos adversos , ARN Mensajero/genética , Vacunas/efectos adversos , Vacunas Virales
11.
J Pharm Sci ; 104(4): 1352-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25600347

RESUMEN

Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra la Influenza/inmunología , Aceites/farmacología , Ovalbúmina/inmunología , Agua/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Anticuerpos/sangre , Biomarcadores/sangre , Células Cultivadas , Química Farmacéutica , Emulsiones , Femenino , Inmunidad Humoral/efectos de los fármacos , Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Inyecciones Intramusculares , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microfluídica , Nanopartículas , Aceites/administración & dosificación , Aceites/química , Ovalbúmina/administración & dosificación , Ovalbúmina/química , Tamaño de la Partícula , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Tecnología Farmacéutica/métodos , Factores de Tiempo , Agua/administración & dosificación , Agua/química
12.
J Infect Dis ; 211(6): 947-55, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25234719

RESUMEN

Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , ARN Viral/inmunología , Vacunas contra el SIDA/administración & dosificación , Inmunidad Adaptativa , Animales , Animales no Consanguíneos , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Cationes , Células Cultivadas , Emulsiones , Infecciones por VIH/inmunología , Inmunidad Celular , Macaca mulatta , Masculino , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
13.
Sci Transl Med ; 6(263): 263ra160, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411473

RESUMEN

Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Diseño de Fármacos , Vacunas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacocinética , Disponibilidad Biológica
14.
Mol Ther ; 22(12): 2118-2129, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25027661

RESUMEN

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Inmunidad Celular , ARN Mensajero/inmunología , ARN Viral/inmunología , Vacunas de ADN/administración & dosificación , Animales , Cationes , Emulsiones/química , Femenino , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Conejos , Ratas
15.
Virology ; 447(1-2): 254-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24210122

RESUMEN

The immunogenicity of alphavirus replicon vaccines is determined by many factors including the level of antigen expression and induction of innate immune responses. Characterized attenuated alphavirus mutants contain changes to the genomic 5' UTR and mutations that result in altered non-structural protein cleavage timing leading to altered levels of antigen expression and interferon (IFN) induction. In an attempt to create more potent replicon vaccines, we engineered a panel of Venezuelan equine encephalitis-Sindbis virus chimeric replicons that contained these attenuating mutations. Modified replicons were ranked for antigen expression and IFN induction levels in cell culture and then evaluated in mice. The results of these studies showed that differences in antigen production and IFN induction in vitro did not correlate with large changes in immunogenicity in vivo. These findings indicate that the complex interactions between innate immune response and the replicon's ability to express antigen complicate rational design of more potent alphavirus replicons.


Asunto(s)
Portadores de Fármacos , Virus de la Encefalitis Equina Venezolana/genética , Vectores Genéticos , Virus Sindbis/genética , Vacunas Virales/inmunología , Regiones no Traducidas 5' , Animales , Antígenos/biosíntesis , Antígenos/inmunología , Perfilación de la Expresión Génica , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
16.
Vaccine ; 31(37): 3872-8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23827313

RESUMEN

Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity.


Asunto(s)
Parvovirus B19 Humano/inmunología , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/prevención & control , Parvovirus B19 Humano/genética , Fosfolipasas A2/metabolismo , Polisorbatos , Saccharomyces cerevisiae/genética , Escualeno/inmunología , Vacunas Sintéticas/genética , Vacunas Virales/aislamiento & purificación
17.
Vaccine ; 31(2): 306-12, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23153444

RESUMEN

In the 1960s, infant immunization with a formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine candidate caused enhanced respiratory disease (ERD) following natural RSV infection. Because of this tragedy, intensive effort has been made to understand the root causes of how the FI-RSV vaccine induced a pathogenic response to subsequent RSV infection in vaccinees. A well-established cotton rat model of FI-RSV vaccine-enhanced disease has been used by numerous researchers to study the mechanisms of ERD. Here, we have dissected the model and found it to have significant limitations for understanding FI-RSV ERD. This view is shaped by our finding that a major driver of lung pathology is cell-culture contaminants, although FI-RSV immunization and RSV challenge serve as co-factors to exacerbate disease. Specifically, non-viral products from the vaccine and challenge preparations that are devoid of RSV give rise to alveolitis, which is considered a hallmark of FI-RSV ERD in the cotton rat model. Although FI-RSV immunization and RSV challenge promote more severe alveolitis, they also drive stronger cellular immune responses to non-viral antigens. The severity of alveolitis is associated with T cells specific for non-viral antigens more than with T cells specific for RSV. These results highlight the limitations of the cotton rat ERD model and the need for an improved animal model to evaluate the safety of RSV vaccine candidates.


Asunto(s)
Antígenos/inmunología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/prevención & control , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas/inmunología , Animales , Anticuerpos/inmunología , Femenino , Inmunidad Celular/inmunología , Inmunización/métodos , Pulmón/inmunología , Pulmón/patología , Ratas , Sigmodontinae
18.
Vaccines (Basel) ; 1(3): 367-83, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26344119

RESUMEN

Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA), and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA.

19.
Emerg Microbes Infect ; 2(8): e52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26038486

RESUMEN

The timing of vaccine availability is essential for an effective response to pandemic influenza. In 2009, vaccine became available after the disease peak, and this has motivated the development of next generation vaccine technologies for more rapid responses. The SAM(®) vaccine platform, now in pre-clinical development, is based on a synthetic, self-amplifying mRNA, delivered by a synthetic lipid nanoparticle (LNP). When used to express seasonal influenza hemagglutinin (HA), a SAM vaccine elicited potent immune responses, comparable to those elicited by a licensed influenza subunit vaccine preparation. When the sequences coding for the HA and neuraminidase (NA) genes from the H7N9 influenza outbreak in China were posted on a web-based data sharing system, the combination of rapid and accurate cell-free gene synthesis and SAM vaccine technology allowed the generation of a vaccine candidate in 8 days. Two weeks after the first immunization, mice had measurable hemagglutinin inhibition (HI) and neutralizing antibody titers against the new virus. Two weeks after the second immunization, all mice had HI titers considered protective. If the SAM vaccine platform proves safe, potent, well tolerated and effective in humans, fully synthetic vaccine technologies could provide unparalleled speed of response to stem the initial wave of influenza outbreaks, allowing first availability of a vaccine candidate days after the discovery of a new virus.

20.
Proc Natl Acad Sci U S A ; 109(36): 14604-9, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908294

RESUMEN

Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Alphavirus/genética , Análisis de Varianza , Animales , Electroforesis en Gel de Agar , Escherichia coli , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/química , Ratas , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...