Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Environ Manage ; 351: 119672, 2024 Feb.
Article En | MEDLINE | ID: mdl-38042072

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater. The current study explores the performance of pilot-scale treatment of real HWW (3000 L/d) spiked with carbamazepine (CBZ) using combinations of moving and stationary bed bio-reactor-sedimentation tank (MBSST), aerated horizontal flow constructed wetland (AHFCW), and photocatalysis. The combination of MBSST and AHFCW could remove 85% COD, 93% TSS, 99% ammonia, and 30% CBZ. However, when the effluent of the AHFCW was subjected to photocatalysis, an enhanced CBZ removal of around 85% was observed. Furthermore, the intermediate products (IPs) formed after the photocatalysis was also less toxic than the IPs formed during the biological processes. The results of this study indicated that the developed pilot-scale treatment unit supplemented with photocatalysis could be used effectively to treat HWW.


Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Ammonia , Carbamazepine/analysis , Biological Oxygen Demand Analysis , Hospitals
2.
Water Res ; 187: 116384, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32980605

Reliable data on the economic feasibility of small-scale rural water supply systems are insufficient, which hampers the allocation of funds to construct them, even as the need for their construction increases. To address this gap, three newly constructed water supply systems with water points in Nepal, Egypt, and Tanzania were accompanied by the authors throughout the planning and implementation phases and up to several years of operation. This study presents an analysis of their economic feasibility and suggests important factors for successful water supply system implementation at other rural locations. The initial investment for construction of the new water supply systems ranged from 23,600 € to 44,000 €, and operation and maintenance costs ranged from 547 € to 1921 € per year. The water price and actual multi-year average quantity of tapped water at each site were 7.7 €/m³ & 0.67 m³/d in Nepal, 0.7 €/m³ & 0.88 m³/d in Egypt and 0.9 €/m³ & 8.65 m³/d in Tanzania. Although the new water supply systems enjoyed acceptance among the consumers, the actual average water quantity tapped ranged from just 17 to 30 % of the demand for which the new supply systems were designed. While two of three sites successfully yielded a cash surplus through the sale of water, sufficient for operation, maintenance and basic repairs, no site showed a realistic chance of recovering the initial investment (reaching the break-even point) within the projected lifetime of the technical infrastructure. Reaching the break-even point within 5 years, which would be necessary to attract private investors, would require an unrealistic increase of the water price or the water consumption by factors ranging from 5.2 to 9.0. The economic viability of such systems therefore depends strongly on the quantity of water consumed and the water price, as well as the availability of funding from governments, NGOs or other sponsors not primarily interested in a financial return on their investment.


Halogenation , Water , Cost-Benefit Analysis , Egypt , Humans , Nepal , Tanzania , Water Supply
3.
Sci Total Environ ; 721: 137595, 2020 Jun 15.
Article En | MEDLINE | ID: mdl-32208224

Increasing water scarcity is of growing concern in Europe, especially in Mediterranean countries along coastlines. Wastewater reuse reduces water stress, but often requires the absence of pathogen indicators and the application of chlorine to assure residual disinfection. However, the effluent qualities of typical Wastewater Treatment Plants (WWTP) show immense chlorine demands. This makes the supply, handling and dosing of typical WWTP effluent challenging, especially in rural regions. In the work presented here, a vertical flow constructed wetland (VFCW) was combined with a small-scale solar-driven Onsite Chlorine Generation system (OCG) to further improve effluent qualities for different WWTPs and to produce chlorine stock solution directly at the site. To test different operational conditions the VFCW received WWTP effluent from a) an Activated Sludge and b) a High-Rate Algae Pond system. The VFCW reduced TSS by 92%, COD by 80%, and NH4 by over 99% and the chlorine demand by 85%. The log-unit reduction of the VFCW/OCG system reached ≥5.1 for total coliforms and ≥4.6 for E. Coli. During VFCW passage the already high electrical conductivity further increased to beyond permissible reuse limits due to high evapotranspiration (ET) rates of the planted vegetation Arundo donax. Unique aspects of this setup were that neither chemicals nor external electricity were required to run the system. The elevated chloride concentration of the treated WW (819 ± 132 mg/L) proved sufficient for the production of chlorine stock solution. However, the solar-driven OCG system tested here consumed considerably more electricity compared to other OCGs available on the market. Nevertheless, the system presented here may be considered an efficient disinfection alternative for decentralized WW reuse applications at remote sites with both limited access to grid electricity and strict requirements for pathogen indicators.


Wastewater , Water Purification , Disinfection , Europe , Halogenation , Waste Disposal, Fluid , Wetlands
4.
Article En | MEDLINE | ID: mdl-28974053

Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.


Arsenic/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/chemistry , Ammonium Compounds/chemistry , Bangladesh , Chemical Precipitation , Chlorides/chemistry , Chlorine/chemistry , Electrolysis , Filtration , Groundwater/chemistry , Hydroxides/chemistry , India , Iron/chemistry , Manganese/chemistry , Phosphates/chemistry , Solar Energy , Water Purification/methods
...