Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Eng Des Sel ; 342021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34258615

RESUMEN

Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine. We examined the modification of the substrate specificity of the thermostable decarboxylase from Thermotoga maritima with the aim to introduce activity with 2-aminopimelic acid (2-APA) since its decarboxylation leads to 6-aminocaproic acid (6-ACA), a building block for the synthesis of nylon-6. Structure-based mutagenesis of the distal carboxylate binding site resulted in a set of enzyme variants with new activities toward different D-amino acids. One of the mutants (E315T) had lost most of its activity toward DAP and primarily acted as a 2-APA decarboxylase. We next used computational modeling to explain the observed shift in catalytic activities of the mutants. The results suggest that predictive computational protocols can support the redesign of the catalytic properties of this class of decarboxylating PLP-dependent enzymes.


Asunto(s)
Carboxiliasas , Thermotoga maritima , Aminoácidos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Especificidad por Sustrato , Thermotoga , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
2.
Proteins ; 89(9): 1079-1098, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33826169

RESUMEN

Caprolactamase is the first enzyme in the caprolactam degradation pathway of Pseudomonas jessenii. It is composed of two subunits (CapA and CapB) and sequence-related to other ATP-dependent enzymes involved in lactam hydrolysis, like 5-oxoprolinases and hydantoinases. Low sequence similarity also exists with ATP-dependent acetone- and acetophenone carboxylases. The caprolactamase was produced in Escherichia coli, isolated by His-tag affinity chromatography, and subjected to functional and structural studies. Activity toward caprolactam required ATP and was dependent on the presence of bicarbonate in the assay buffer. The hydrolysis product was identified as 6-aminocaproic acid. Quantum mechanical modeling indicated that the hydrolysis of caprolactam was highly disfavored (ΔG0 '= 23 kJ/mol), which explained the ATP dependence. A crystal structure showed that the enzyme exists as an (αß)2 tetramer and revealed an ATP-binding site in CapA and a Zn-coordinating site in CapB. Mutations in the ATP-binding site of CapA (D11A and D295A) significantly reduced product formation. Mutants with substitutions in the metal binding site of CapB (D41A, H99A, D101A, and H124A) were inactive and less thermostable than the wild-type enzyme. These residues proved to be essential for activity and on basis of the experimental findings we propose possible mechanisms for ATP-dependent lactam hydrolysis.


Asunto(s)
Adenosina Trifosfato/química , Amidohidrolasas/química , Proteínas Bacterianas/química , Caprolactama/química , Subunidades de Proteína/química , Pseudomonas/enzimología , Adenosina Trifosfato/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Ácido Aminocaproico/química , Ácido Aminocaproico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Caprolactama/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hidrólisis , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pseudomonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
3.
ACS Catal ; 10(5): 2915-2928, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32953233

RESUMEN

Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.

4.
FEBS J ; 286(20): 4086-4102, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31162815

RESUMEN

The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I pyridoxal 5'-phosphate (PLP) enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines. Comparison with the homologous aminotransferases from Chromobacterium violaceum (CvAT) and Vibrio fluvialis (VfAT) showed that the PjAT enzyme has the lowest KM values (highest affinity) and highest specificity constant (kcat /KM ) with the caprolactam degradation intermediates 6-aminohexanoate and 6-oxohexanoic acid, in accordance with its proposed in vivo function. Five distinct three-dimensional structures of PjAT were solved by protein crystallography. The structure of the aldimine intermediate formed from 6-aminohexanoate and the PLP cofactor revealed the presence of a narrow hydrophobic substrate-binding tunnel leading to the cofactor and covered by a flexible arginine, which explains the high activity and selectivity of the PjAT with 6-aminohexanoate. The results suggest that the degradation pathway for caprolactam has recruited an aminotransferase that is well adapted to 6-aminohexanoate degradation. DATABASE: The atomic coordinates and structure factors P. jessenii 6-aminohexanoate aminotransferase have been deposited in the PDB as entries 6G4B (E∙succinate complex), 6G4C (E∙phosphate complex), 6G4D (E∙PLP complex), 6G4E (E∙PLP-6-aminohexanoate intermediate), and 6G4F (E∙PMP complex).


Asunto(s)
Ácido Aminocaproico/metabolismo , Proteínas Bacterianas/metabolismo , Caprolactama/metabolismo , Pseudomonas/enzimología , Fosfato de Piridoxal/metabolismo , Transaminasas/química , Transaminasas/metabolismo , Secuencia de Aminoácidos , Ácido Aminocaproico/química , Proteínas Bacterianas/química , Caprolactama/química , Cristalografía por Rayos X , Modelos Moleculares , Filogenia , Homología de Secuencia , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 102(15): 6699-6711, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29850960

RESUMEN

Some bacterial cultures are capable of growth on caprolactam as sole carbon and nitrogen source, but the enzymes of the catabolic pathway have not been described. We isolated a caprolactam-degrading strain of Pseudomonas jessenii from soil and identified proteins and genes putatively involved in caprolactam metabolism using quantitative mass spectrometry-based proteomics. This led to the discovery of a caprolactamase and an aminotransferase that are involved in the initial steps of caprolactam conversion. Additionally, various proteins were identified that likely are involved in later steps of the pathway. The caprolactamase consists of two subunits and demonstrated high sequence identity to the 5-oxoprolinases. Escherichia coli cells expressing this caprolactamase did not convert 5-oxoproline but were able to hydrolyze caprolactam to form 6-aminocaproic acid in an ATP-dependent manner. Characterization of the aminotransferase revealed that the enzyme deaminates 6-aminocaproic acid to produce 6-oxohexanoate with pyruvate as amino acceptor. The amino acid sequence of the aminotransferase showed high similarity to subgroup II ω-aminotransferases of the PLP-fold type I proteins. Finally, analyses of the genome sequence revealed the presence of a caprolactam catabolism gene cluster comprising a set of genes involved in the conversion of caprolactam to adipate.


Asunto(s)
Caprolactama/metabolismo , Espectrometría de Masas , Proteómica , Pseudomonas/genética , Pseudomonas/metabolismo , Escherichia coli , Familia de Multigenes/genética
6.
Nat Chem Biol ; 14(7): 664-670, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29785057

RESUMEN

Introduction of innovative biocatalytic processes offers great promise for applications in green chemistry. However, owing to limited catalytic performance, the enzymes harvested from nature's biodiversity often need to be improved for their desired functions by time-consuming iterative rounds of laboratory evolution. Here we describe the use of structure-based computational enzyme design to convert Bacillus sp. YM55-1 aspartase, an enzyme with a very narrow substrate scope, to a set of complementary hydroamination biocatalysts. The redesigned enzymes catalyze asymmetric addition of ammonia to substituted acrylates, affording enantiopure aliphatic, polar and aromatic ß-amino acids that are valuable building blocks for the synthesis of pharmaceuticals and bioactive compounds. Without a requirement for further optimization by laboratory evolution, the redesigned enzymes exhibit substrate tolerance up to a concentration of 300 g/L, conversion up to 99%, ß-regioselectivity >99% and product enantiomeric excess >99%. The results highlight the use of computational design to rapidly adapt an enzyme to industrially viable reactions.


Asunto(s)
Aspartato Amoníaco-Liasa/química , Biología Computacional , Aminación , Aspartato Amoníaco-Liasa/metabolismo , Bacillus/enzimología , Biocatálisis
7.
Appl Microbiol Biotechnol ; 99(21): 8987-98, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26004802

RESUMEN

Pseudomonas species strain SBV1 can rapidly grow on medium containing ß-valine as a sole nitrogen source. The tertiary amine feature of ß-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of ß-valine, a PsSBV1 gene library was prepared and used to complement the ß-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding ß-valinyl-coenzyme A ligase (BvaA) and two genes encoding ß-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate ß-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only ß-valine and to a lesser extent, 3-aminobutyrate and ß-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate ß-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.


Asunto(s)
Amoníaco-Liasas/metabolismo , Coenzima A/metabolismo , Redes y Vías Metabólicas/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Valina/metabolismo , Amoníaco-Liasas/genética , Biblioteca de Genes , Prueba de Complementación Genética , Pseudomonas/crecimiento & desarrollo , Homología de Secuencia , Especificidad por Sustrato
8.
Traffic ; 13(7): 947-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486971

RESUMEN

During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with the cargo-binding domain of Myo2p. We identified mutations in Myo2p that specifically reduced binding to Pex19p, but not to Inp2p. The interaction between Myo2p and Pex19p was also reduced by a mutation that blocked Pex19p farnesylation. Microscopy revealed that the Pex19p-Myo2p interaction is important for peroxisome inheritance, because mutations that affect this interaction hamper peroxisome inheritance in vivo. Together these data suggest that both Inp2p and Pex19p are required for proper association of peroxisomes to Myo2p.


Asunto(s)
Proteínas de la Membrana/fisiología , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Peroxisomas/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , División Celular , Proteínas de la Membrana/metabolismo , Mutación , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Peroxisomas/genética , Prenilación , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
FEBS Lett ; 583(19): 3175-80, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19733569

RESUMEN

Emp24 is a member of the p24 protein family, which was initially localized to the endoplasmic reticulum, Golgi and COP vesicles, but has recently shown to be associated with Saccharomyces cerevisiae peroxisomes as well. Using cell fractionation and electron- and fluorescence microscopy, we show that in the yeast Hansenula polymorpha, Emp24 also associates with peroxisomes. In addition, we show that peroxisome numbers are strongly decreased in H. polymorpha cells lacking two proteins of the p24 complex, Emp24 and Erp3. Detailed fluorescence microscopy analyses suggest that emp24.erp3 cells are disturbed in peroxisome fission and inheritance.


Asunto(s)
Proteínas Fúngicas/fisiología , Peroxisomas/fisiología , Pichia/fisiología , Proteínas de Transporte Vesicular/fisiología , Proteínas Fúngicas/genética , Eliminación de Gen , Pichia/genética , Pichia/ultraestructura , Proteínas de Transporte Vesicular/genética
10.
Traffic ; 9(9): 1471-84, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18513378

RESUMEN

We show that Mdv1 and Caf4, two components of the mitochondrial fission machinery in Saccharomyces cerevisiae, also function in peroxisome proliferation. Deletion of MDV1, CAF4 or both, however, had only a minor effect on peroxisome numbers at peroxisome-inducing growth conditions, most likely related to the fact that Vps1--and not Dnm1--is the key player in peroxisome fission in this organism. In contrast, in Hansenula polymorpha, which has only a Dnm1-dependent peroxisome fission machinery, deletion of MDV1 led to a drastic reduction of peroxisome numbers. This phenotype was accompanied by a strong defect in mitochondrial fission. The MDV1 paralog CAF4 is absent in H. polymorpha. In wild-type H. polymorpha, cells Dnm1-mCherry and green fluorescent protein (GFP)-Mdv1 colocalize in spots that associate with both peroxisomes and mitochondria. Furthermore, Fis1 is essential to recruit Mdv1 to the peroxisomal and mitochondrial membrane. However, formation of GFP-Mdv1 spots--and related to this normal organelle fission--is strictly dependent on the presence of Dnm1. In dnm1 cells, GFP-Mdv1 is dispersed over the surface of peroxisomes and mitochondria. Also, in H. polymorpha mdv1 or fis1 cells, the number of Dnm1-GFP spots is strongly reduced. These spots still associate to organelles but are functionally inactive.


Asunto(s)
Proteínas Fúngicas/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Peroxisomas/fisiología , Pichia/fisiología , Secuencia de Bases , Dinaminas/genética , Dinaminas/metabolismo , Dinaminas/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Peroxisomas/metabolismo , Peroxisomas/ultraestructura , Pichia/genética , Pichia/metabolismo , Pichia/ultraestructura , Plásmidos , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
11.
Biochim Biophys Acta ; 1783(5): 760-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18060881

RESUMEN

We show that the dynamin-like proteins Dnm1p and Vps1p are not required for re-introduction of peroxisomes in Hansenula polymorpha pex3 cells upon complementation with PEX3-GFP. Instead, Dnm1p, but not Vps1p, plays a crucial role in organelle proliferation via fission. In H. polymorpha DNM1 deletion cells (dnm1) a single peroxisome is present that forms long extensions, which protrude into developing buds and divide during cytokinesis. Budding pex11.dnm1 double deletion cells lack these peroxisomal extensions, suggesting that the peroxisomal membrane protein Pex11p is required for their formation. Life cell imaging revealed that fluorescent Dnm1p-GFP spots fluctuate between peroxisomes and mitochondria. On the other hand Pex11p is present over the entire organelle surface, but concentrates during fission at the basis of the organelle extension in dnm1 cells. Our data indicate that peroxisome fission is the major pathway for peroxisome multiplication in H. polymorpha.


Asunto(s)
Dinaminas/fisiología , Proteínas Fúngicas/fisiología , Peroxisomas/ultraestructura , Pichia/ultraestructura , Dinaminas/análisis , Dinaminas/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/análisis , Proteínas Fúngicas/genética , Eliminación de Gen , Proteínas de la Membrana/fisiología , Mitocondrias/química , Peroxisomas/química , Pichia/citología , Pichia/enzimología
13.
FEMS Yeast Res ; 6(8): 1157-66, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17156013

RESUMEN

The peroxin Pex19p is important for the formation of functional peroxisomal membranes. Here we show that Hansenula polymorpha Pex19p is also required for peroxisome inheritance. Peroxisome inheritance is partly defective when Pex19p farnesylation is blocked, whereas deletion of PEX19 resulted in a severe defect in partitioning of peroxisomal structures. Time lapse imaging revealed that in newly formed buds, which had not inherited a peroxisome from the mother cell, new peroxisomes are formed that derive from the nuclear envelope/endoplasmic reticulum. This process was impaired upon deletion of EMP24 and ERP3, genes that encode p24 proteins. p24 Proteins are components of coated vesicles that mediate trafficking between the endoplasmic reticulum and Golgi apparatus. In an H. polymorpha wild-type background, deletion of EMP24 and ERP3 resulted in a strong reduction of organelle number in conjunction with an increase in the size of individual peroxisomes. This observation suggests that p24 proteins also play a role in peroxisome development in wild-type H. polymorpha cells.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas Fúngicas/fisiología , Peroxisomas/fisiología , Pichia/citología , Proteínas de Transporte Vesicular/fisiología , Proteínas de la Membrana/fisiología , Pichia/fisiología
14.
FEMS Yeast Res ; 6(2): 186-94, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16487342

RESUMEN

The reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p was examined. Using a Pex3-green fluorescent protein (Pex3-GFP) fusion protein, expressed under the control of an inducible promoter, it was observed that, initially on induction of Pex3-GFP synthesis, GFP fluorescence was localized to the endoplasmic reticulum and the nuclear envelope. Subsequently, a single organelle developed per cell that increased in size and multiplied by division. At these stages, GFP fluorescence was confined to peroxisomes. Fractionation experiments on homogenates of pex3 cells, in which the endoplasmic reticulum and nuclear envelope were marked with GFP, identified a small amount of GFP in peroxisomes present in the initial stage of peroxisome reassembly. Our data suggest a crucial role for the endoplasmic reticulum/nuclear envelope in peroxisome reintroduction on complementation of pex3 cells by the PEX3 gene.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Peroxisomas/metabolismo , Pichia/metabolismo , Retículo Endoplásmico/metabolismo , Pichia/citología
15.
Biochim Biophys Acta ; 1745(2): 176-86, 2005 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16129125

RESUMEN

Pex4p is an ubiquitin-conjugating enzyme that functions at a late stage of peroxisomal matrix protein import. Here we show that in the methylotrophic yeast Hansenula polymorpha production of a mutant form of ubiquitin (Ub(K48R)) has a dramatic effect on PTS1 matrix protein import. This effect was not observed in cells lacking Pex4p, in which the peroxisome biogenesis defect was largely suppressed. These findings provide the first indication that the function of Pex4p in matrix protein import involves polyubiquitination. We also demonstrate that the production of Ub(K48R) in H. polymorpha results in enhanced Pex5p degradation. A similar observation was made in cells in which the PEX4 gene was deleted. We demonstrate that in both strains Pex5p degradation was due to ubiquitination and subsequent degradation by the proteasome. This process appeared to be dependent on a conserved lysine residue in the N-terminus of Pex5p (Lys21) and was prevented in a Pex5p(K21R) mutant. We speculate that the degradation of Pex5p by the proteasome is important to remove receptor molecules that are stuck at a late stage of the Pex5p-mediated protein import pathway.


Asunto(s)
Peroxisomas/metabolismo , Poliubiquitina/antagonistas & inhibidores , Poliubiquitina/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Datos de Secuencia Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Pichia/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Ubiquitinas/deficiencia , Ubiquitinas/metabolismo
16.
J Cell Sci ; 118(Pt 15): 3409-18, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16079284

RESUMEN

We have cloned and characterized the Hansenula polymorpha PEX20 gene. The HpPEX20 gene encodes a protein of 309 amino acids (HpPex20p) with a calculated molecular mass of approximately 35 kDa. In cells of an HpPEX20 disruption strain, PTS2 proteins were mislocalized to the cytosol, whereas PTS1 matrix protein import proceeded normally. Also, the PTS2 proteins amine oxidase and thiolase were normally assembled and active in these cells, suggesting HpPex20p is not involved in oligomerization/activation of these proteins. Localization studies revealed that HpPex20p is predominantly associated with peroxisomes. Using fluorescence correlation spectroscopy we determined the native molecular mass of purified HpPex20p and binding of a synthetic peptide containing a PTS2 sequence. The data revealed that purified HpPex20p forms oligomers, which specifically bind PTS2-containing peptides.


Asunto(s)
Proteínas Fúngicas/metabolismo , Oligonucleótidos/metabolismo , Pichia/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Clonación Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Microscopía Fluorescente , Peso Molecular , Oligonucleótidos/química , Oligonucleótidos/genética , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Pichia/química , Pichia/citología , Receptores Citoplasmáticos y Nucleares/química , Factores de Tiempo
17.
J Biol Chem ; 279(18): 19181-90, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-14981078

RESUMEN

We have cloned and characterized the Hansenula polymorpha PEX19 gene. In cells of a pex19 disruption strain (Hppex19), induced on methanol, peroxisome structures were not detectable; peroxisomal matrix proteins accumulated in the cytosol, whereas peroxisomal membrane proteins (PMPs) were mislocalized to the cytosol (Pex3p) and mitochondria (Pex14p) or strongly reduced to undetectable levels (Pex10p). The defect in peroxisome formation in Hppex19 cells was largely suppressed upon overproduction of HpPex3p or a fusion protein that consisted of the first 50 N-terminal amino acids of Pex3p and GFP. In these cells PMPs were again correctly sorted to peroxisomal structures, which also harbored peroxisomal matrix proteins. In Saccharomyces cerevisiae pex19 cells overproduction of ScPex3p led to the formation of numerous vesicles that contained PMPs but lacked the major matrix protein thiolase. Taken together, our data are consistent with a function of Pex19p in membrane protein assembly and function.


Asunto(s)
Proteínas de la Membrana/fisiología , Peroxisomas/ultraestructura , Pichia/química , Secuencia de Bases , Clonación Molecular , Proteínas Fúngicas/fisiología , Membranas Intracelulares , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Peroxinas , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA