Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Proc Natl Acad Sci U S A ; 121(15): e2315659121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38564635

Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.


Gene Expression Regulation , Monocytes , Animals , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Transcription Factors/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1367376, 2024.
Article En | MEDLINE | ID: mdl-38660516

Background: The systemic immuno-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are widely used and have been shown to be predictive indicators of various diseases. Diabetic nephropathy (DN), retinopathy (DR), and peripheral neuropathy (DPN) are the most prominent and common microvascular complications, which have seriously negative impacts on patients, families, and society. Exploring the associations with these three indicators and diabetic microvascular complications are the main purpose. Methods: There were 1058 individuals with type 2 diabetes mellitus (T2DM) in this retrospective cross-sectional study. SII, NLR, and PLR were calculated. The diseases were diagnosed by endocrinologists. Logistic regression and subgroup analysis were applied to evaluate the association between SII, NLP, and PLR and diabetic microvascular complications. Results: SII, NLR, and PLR were significantly associated with the risk of DN [odds ratios (ORs): 1.52, 1.71, and 1.60, respectively] and DR [ORs: 1.57, 1.79, and 1.55, respectively] by multivariate logistic regression. When NLR ≥2.66, the OR was significantly higher for the risk of DPN (OR: 1.985, 95% confidence interval: 1.29-3.05). Subgroup analysis showed no significant positive associations across different demographics and comorbidities, including sex, age, hypertension, HbA1c (glycated hemoglobin), and dyslipidemia. Conclusion: This study found a positive relationship between NLR and DN, DR, and DPN. In contrast, SII and PLR were found to be only associated with DN and DR. Therefore, for the diagnosis of diabetic microvascular complications, SII, NLR and PLR are highly valuable.


Blood Platelets , Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Lymphocytes , Neutrophils , Humans , Male , Female , Middle Aged , Neutrophils/pathology , Retrospective Studies , Cross-Sectional Studies , Lymphocytes/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/immunology , Diabetic Angiopathies/pathology , Blood Platelets/pathology , Aged , Inflammation/blood , Inflammation/pathology , Diabetic Neuropathies/blood , Diabetic Neuropathies/pathology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/diagnosis , Diabetic Retinopathy/blood , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/immunology , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Diabetic Nephropathies/diagnosis , Lymphocyte Count , Platelet Count , Adult
3.
Eur J Immunol ; 53(9): e2250201, 2023 09.
Article En | MEDLINE | ID: mdl-37424050

In vitro culture of bone marrow (BM) with Fms-like tyrosine kinase 3 ligand (Flt3L) is widely used to study development and function of type 1 conventional dendritic cells (cDC1). Hematopoietic stem cells (HSCs) and many progenitor populations that possess cDC1 potential in vivo do not express Flt3 and thus may not contribute to Flt3L-mediated cDC1 production in vitro. Here, we present a KitL/Flt3L protocol that recruits such HSCs and progenitors into the production of cDC1. Kit ligand (KitL) is used to expand HSCs and early progenitors lacking Flt3 expression into later stage where Flt3 is expressed. Following this initial KitL phase, a second Flt3L phase is used to support the final production of DCs. With this two-stage culture, we achieved approximately tenfold increased production of both cDC1 and cDC2 compared to Flt3L culture. cDC1 derived from this culture are similar to in vivo cDC1 in their dependence on IRF8, ability to produce IL-12, and induction of tumor regression in cDC1-deficient tumor-bearing mice. This KitL/Flt3L system for cDC1 production will be useful in further analysis of cDC1 that rely on in vitro generation from BM.


Hematopoietic Stem Cells , Stem Cell Factor , Mice , Animals , Bone Marrow , Bone Marrow Cells , Dendritic Cells
4.
J Exp Med ; 220(10)2023 10 02.
Article En | MEDLINE | ID: mdl-37432392

Cytokines produced in association with tumors can impair antitumor immune responses by reducing the abundance of type 1 conventional dendritic cells (cDC1), but the mechanism remains unclear. Here, we show that tumor-derived IL-6 generally reduces cDC development but selectively impairs cDC1 development in both murine and human systems through the induction of C/EBPß in the common dendritic cell progenitor (CDP). C/EBPß and NFIL3 compete for binding to sites in the Zeb2 -165 kb enhancer and support or repress Zeb2 expression, respectively. At homeostasis, pre-cDC1 specification occurs upon Nfil3 induction and consequent Zeb2 suppression. However, IL-6 strongly induces C/EBPß expression in CDPs. Importantly, the ability of IL-6 to impair cDC development is dependent on the presence of C/EBPß binding sites in the Zeb2 -165 kb enhancer, as this effect is lost in Δ1+2+3 mutant mice in which these binding sites are mutated. These results explain how tumor-associated IL-6 suppresses cDC1 development and suggest therapeutic approaches preventing abnormal C/EBPß induction in CDPs may help reestablish cDC1 development to enhance antitumor immunity.


Cytokines , Interleukin-6 , Humans , Animals , Mice , Binding Sites , Dendritic Cells , Homeostasis
5.
Proc Natl Acad Sci U S A ; 120(13): e2219956120, 2023 03 28.
Article En | MEDLINE | ID: mdl-36940342

The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to ß cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate ß cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive ß cell damage.


Diabetes Mellitus, Type 1 , Islets of Langerhans , Mice , Animals , Mice, Inbred NOD , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Histocompatibility Antigens Class II
6.
Genes Dev ; 37(7-8): 291-302, 2023 04 01.
Article En | MEDLINE | ID: mdl-36990511

Individual elements within a superenhancer can act in a cooperative or temporal manner, but the underlying mechanisms remain obscure. We recently identified an Irf8 superenhancer, within which different elements act at distinct stages of type 1 classical dendritic cell (cDC1) development. The +41-kb Irf8 enhancer is required for pre-cDC1 specification, while the +32-kb Irf8 enhancer acts to support subsequent cDC1 maturation. Here, we found that compound heterozygous Δ32/Δ41 mice, lacking the +32- and +41-kb enhancers on different chromosomes, show normal pre-cDC1 specification but, surprisingly, completely lack mature cDC1 development, suggesting cis dependence of the +32-kb enhancer on the +41-kb enhancer. Transcription of the +32-kb Irf8 enhancer-associated long noncoding RNA (lncRNA) Gm39266 is also dependent on the +41-kb enhancer. However, cDC1 development in mice remained intact when Gm39266 transcripts were eliminated by CRISPR/Cas9-mediated deletion of lncRNA promoters and when transcription across the +32-kb enhancer was blocked by premature polyadenylation. We showed that chromatin accessibility and BATF3 binding at the +32-kb enhancer were dependent on a functional +41-kb enhancer located in cis Thus, the +41-kb Irf8 enhancer controls the subsequent activation of the +32-kb Irf8 enhancer in a manner that is independent of associated lncRNA transcription.


RNA, Long Noncoding , Animals , Mice , Enhancer Elements, Genetic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic
7.
Nat Immunol ; 23(11): 1536-1550, 2022 11.
Article En | MEDLINE | ID: mdl-36271147

CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.


CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , CD40 Antigens/genetics , Antigen Presentation , Dendritic Cells , Mice, Inbred C57BL
8.
Cancer Immunol Res ; 10(8): 920-931, 2022 08 03.
Article En | MEDLINE | ID: mdl-35648641

As a cell-based cancer vaccine, dendritic cells (DC), derived from peripheral blood monocytes or bone marrow (BM) treated with GM-CSF (GMDC), were initially thought to induce antitumor immunity by presenting tumor antigens directly to host T cells. Subsequent work revealed that GMDCs do not directly prime tumor-specific T cells, but must transfer their antigens to host DCs. This reduces their advantage over strictly antigen-based strategies proposed as cancer vaccines. Type 1 conventional DCs (cDC1) have been reported to be superior to GMDCs as a cancer vaccine, but whether they act by transferring antigens to host DCs is unknown. To test this, we compared antitumor responses induced by GMDCs and cDC1 in Irf8 +32-/- mice, which lack endogenous cDC1 and cannot reject immunogenic fibrosarcomas. Both GMDCs and cDC1 could cross-present cell-associated antigens to CD8+ T cells in vitro. However, injection of GMDCs into tumors in Irf8 +32-/- mice did not induce antitumor immunity, consistent with their reported dependence on host cDC1. In contrast, injection of cDC1s into tumors in Irf8 +32-/- mice resulted in their migration to tumor-draining lymph nodes, activation of tumor-specific CD8+ T cells, and rejection of the tumors. Tumor rejection did not require the in vitro loading of cDC1 with antigens, indicating that acquisition of antigens in vivo is sufficient to induce antitumor responses. Finally, cDC1 vaccination showed abscopal effects, with rejection of untreated tumors growing concurrently on the opposite flank. These results suggest that cDC1 may be a useful future avenue to explore for antitumor therapy. See related Spotlight by Hubert et al., p. 918.


Cancer Vaccines , Fibrosarcoma , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Dendritic Cells/immunology , Interferon Regulatory Factors , Mice
9.
Nature ; 607(7917): 142-148, 2022 07.
Article En | MEDLINE | ID: mdl-35732734

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Cell Differentiation , Dendritic Cells , Enhancer Elements, Genetic , Mutation , Zinc Finger E-box Binding Homeobox 2 , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Dendritic Cells/classification , Dendritic Cells/cytology , Dendritic Cells/pathology , Enhancer Elements, Genetic/genetics , Epistasis, Genetic , Inhibitor of Differentiation Protein 2 , Lymphocytes/cytology , Mice , Myeloid Cells/cytology , Nematospiroides dubius/immunology , Repressor Proteins , Th2 Cells/cytology , Th2 Cells/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
10.
J Exp Med ; 219(2)2022 02 07.
Article En | MEDLINE | ID: mdl-34958351

During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development.


Cell Differentiation/genetics , Dendritic Cells/cytology , Dendritic Cells/metabolism , Gene Expression Regulation , Genes, myc , Interferon Regulatory Factors/genetics , Animals , Cell Cycle Proteins/genetics , Enhancer Elements, Genetic , Genes, Reporter , Immunophenotyping , Interferon Regulatory Factors/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Knockout , Protein Binding , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
11.
Front Public Health ; 9: 678934, 2021.
Article En | MEDLINE | ID: mdl-34095076

The COVID-19 public health crisis has quickly led to an economic crisis, impacting many people and businesses in the world. This study examines how the pandemic affects workforces and workers' income. We quantify the impact of staggered resumption of work, after the coronavirus lockdowns, on the migrant workers' income. Using data on population movements of 366 Chinese cities at the daily level from the Baidu Maps-Migration Big Data Platform and historical data on the average monthly income of migrant workers, we find that the average work resumption rate (WRR) during the period of the Chinese Lantern Festival was 25.25%, which was only 30.67% of that in the same matched lunar calendar period in 2019. We then apply Gray Model First Order One Variable [GM (1, 1)] to predict the monthly income of migrant workers during the period of the COVID-19 pandemic. We show that, if without the influence of the COVID-19 pandemic, the average monthly income of migrant workers in 2020 will be expected to increase by 12% compared with 2019. We further conduct scenario analysis and show that the average monthly income of migrant workers in 2020 under the conservative scenario (COS), medium scenario (MES), and worse scenario (WOS) will be predicted to decrease by 2, 21, and 44%, respectively. Through testing, our prediction error is <5%. Our findings will help policymakers to decide when and how they implement a plan to ease the coronavirus lockdown and related financial support policies.


COVID-19 , Transients and Migrants , Cities , Communicable Disease Control , Humans , Pandemics , SARS-CoV-2
12.
Sci Immunol ; 5(43)2020 01 24.
Article En | MEDLINE | ID: mdl-31980486

T follicular helper cells (TFH) participate in germinal center (GC) development and are necessary for B cell production of high-affinity, isotype-switched antibodies. In a forward genetic screen, we identified a missense mutation in Prkd2, encoding the serine/threonine kinase protein kinase D2, which caused elevated titers of immunoglobulin E (IgE) in the serum. Subsequent analysis of serum antibodies in mice with a targeted null mutation of Prkd2 demonstrated polyclonal hypergammaglobulinemia of IgE, IgG1, and IgA isotypes, which was exacerbated by the T cell-dependent humoral response to immunization. GC formation and GC B cells were increased in Prkd2-/- spleens. These effects were the result of excessive cell-autonomous TFH development caused by unrestricted Bcl6 nuclear translocation in Prkd2-/- CD4+ T cells. Prkd2 directly binds to Bcl6, and Prkd2-dependent phosphorylation of Bcl6 is necessary to constrain Bcl6 to the cytoplasm, thereby limiting TFH development. In response to immunization, Bcl6 repressed Prkd2 expression in CD4+ T cells, thereby committing them to TFH development. Thus, Prkd2 and Bcl6 form a mutually inhibitory positive feedback loop that controls the stable transition from naïve CD4+ T cells to TFH during the adaptive immune response.


CD4-Positive T-Lymphocytes/immunology , Protein Kinases/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Animals , B-Lymphocytes/immunology , Bone Marrow Transplantation , Cell Differentiation , Female , Germinal Center/immunology , HEK293 Cells , Humans , Immunoglobulins/blood , Immunotherapy, Adoptive , Male , Mice, Transgenic , Mutation , Protein Kinase D2 , Protein Kinases/genetics
13.
Dis Model Mech ; 11(12)2018 12 18.
Article En | MEDLINE | ID: mdl-30563851

Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a member of the basic helix-loop-helix/PER-ARNT-SIM (bHLH/PAS) transcription factor family. ARNT2 heterodimerizes with several members of the family, including single-minded homolog-1 (SIM1) and neuronal PAS domain protein 4 (NPAS4), primarily in neurons of the central nervous system. We screened 64,424 third-generation germline mutant mice derived from N-ethyl-N-nitrosourea (ENU)-mutagenized great-grandsires for weight abnormalities. Among 17 elevated body weight phenotypes identified and mapped, one strongly correlated with an induced missense mutation in Arnt2 using a semidominant model of inheritance. Causation was confirmed by CRISPR/Cas9 gene targeting to recapitulate the original ENU allele, specifying Arg74Cys (R74C). The CRISPR/Cas9-targeted (Arnt2R74C/R74C) mice demonstrated hyperphagia and increased adiposity as well as hepatic steatosis and abnormalities in glucose homeostasis. The mutant ARNT2 protein showed decreased transcriptional activity when coexpressed with SIM1. These findings establish a requirement for ARNT2-dependent genes in the maintenance of the homeostatic feeding response, necessary for prevention of obesity and obesity-related diseases.


Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Diabetes Mellitus/genetics , Fatty Liver/genetics , Genetic Predisposition to Disease , Hyperphagia/genetics , Mutation/genetics , Obesity/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Weight , Ethylnitrosourea , Female , Glucose/metabolism , HEK293 Cells , Homeostasis , Homozygote , Humans , Hypothalamus/pathology , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Repressor Proteins/metabolism , Reproducibility of Results , Transcription, Genetic
...