Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cardiovasc Res ; 120(2): 152-163, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38175760

RESUMEN

AIMS: Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS: Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION: This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Ratas , Animales , Porcinos , Miocitos Cardíacos , Enfermedad Crónica , Terapia Genética , Ciclo Celular
2.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076903

RESUMEN

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity, which leads to progressive heart failure. Calcium (Ca2+) is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. A drug screen targeting proteins involved in CM calcium cycling in human embryonic stem cell-derived cardiac organoids (hCOs) revealed that only the inhibition of L-Type Calcium Channel (LTCC), but not other Ca2+ regulatory proteins (SERCA or RYR), induced the CM cell cycle. Furthermore, overexpression of Ras-related associated with Diabetes (RRAD), an endogenous inhibitor of LTCC, induced CM cell cycle activity in vitro, in human cardiac slices, and in vivo. Mechanistically, LTCC inhibition by RRAD induces the cell cycle in CMs by modulating calcineurin activity and translocating Hoxb13 to the CM nucleus. Together, this represents a robust pathway for regenerative strategies.

3.
iScience ; 26(6): 106970, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37324527

RESUMEN

Despite the development of clinical treatments, heart failure remains the leading cause of mortality. We observed that p21-activated kinase 3 (PAK3) was augmented in failing human and mouse hearts. Furthermore, mice with cardiac-specific PAK3 overexpression exhibited exacerbated pathological remodeling and deteriorated cardiac function. Myocardium with PAK3 overexpression displayed hypertrophic growth, excessive fibrosis, and aggravated apoptosis following isoprenaline stimulation as early as two days. Mechanistically, using cultured cardiomyocytes and human-relevant samples under distinct stimulations, we, for the first time, demonstrated that PAK3 acts as a suppressor of autophagy through hyper-activation of the mechanistic target of rapamycin complex 1 (mTORC1). Defective autophagy in the myocardium contributes to the progression of heart failure. More importantly, PAK3-provoked cardiac dysfunction was mitigated by administering an autophagic inducer. Our study illustrates a unique role of PAK3 in autophagy regulation and the therapeutic potential of targeting this axis for heart failure.

4.
Heliyon ; 9(4): e14952, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37123894

RESUMEN

Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (ß-KL). This study first demonstrated a decreased expression or activity of FGFR1 and ß-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and ß-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-ß-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-ß-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.

5.
Mol Cell Biochem ; 478(4): 927-937, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36114991

RESUMEN

Activated cardiac fibroblasts are involved in both reparative wound healing and maladaptive cardiac fibrosis after myocardial infarction (MI). Recent evidence suggests that PU.1 inhibition can enable reprogramming of profibrotic fibroblasts to quiescent fibroblasts, leading to attenuation of pathologic fibrosis in several fibrosis models. The role of PU.1 in acute MI has not been tested. We designed a randomized, blinded study to evaluate whether DB1976, a PU.1 inhibitor, attenuates cardiac function deterioration and fibrosis in a murine model of MI. A total of 44 Ai9 periostin-Cre transgenic mice were subjected to 60 min of coronary occlusion followed by reperfusion. At 7 days after MI, 37 mice were randomly assigned to control (vehicle) or DB1976 treatment and followed for 2 weeks. Left ventricular ejection fraction (EF), assessed by echocardiography, did not differ between the two groups before or after treatment (final EF, 33.3 ± 1.0% in control group and 31.2 ± 1.3% in DB1976 group). Subgroup analysis of female and male mice showed the same results. There were no differences in cardiac scar (trichrome stain) and fibrosis (interstitial/perivascular collagen; picrosirius stain) between groups. Results from the per-protocol dataset (including mice with pre-treatment EF < 35% only) were consistent with the full dataset. In conclusion, this randomized, blinded study demonstrates that DB1976, a PU.1 inhibitor, does not attenuate cardiac functional deterioration or cardiac fibrosis in a mouse model of MI caused by coronary occlusion/reperfusion.


Asunto(s)
Oclusión Coronaria , Infarto del Miocardio , Ratones , Masculino , Femenino , Animales , Volumen Sistólico , Oclusión Coronaria/patología , Modelos Animales de Enfermedad , Función Ventricular Izquierda , Infarto del Miocardio/patología , Ratones Transgénicos , Fibrosis , Miocardio/patología , Ratones Endogámicos C57BL , Remodelación Ventricular
6.
Mol Cell Biochem ; 478(6): 1245-1250, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36282351

RESUMEN

The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratas , Aldosterona/metabolismo , Ciclo Celular , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo , Riñón/metabolismo , Infarto del Miocardio/metabolismo , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina
7.
Commun Biol ; 5(1): 934, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085302

RESUMEN

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Asunto(s)
Biomimética , Corazón , Cardiomegalia , Medios de Cultivo , Humanos , Sístole
8.
iScience ; 25(3): 103973, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35281739

RESUMEN

Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.

9.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35061545

RESUMEN

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Ciclo Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
10.
Cardiovasc Eng Technol ; 13(1): 170-180, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34402037

RESUMEN

PURPOSE: Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. METHODS: In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. RESULTS: The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. CONCLUSION: This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.


Asunto(s)
Inteligencia Artificial , Miocitos Cardíacos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
11.
Redox Biol ; 46: 102094, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418597

RESUMEN

AIMS: The coordinated gene and metabolic programs that facilitate cardiomyocyte entry and progression in the cell cycle are poorly understood. The purpose of this study was to identify the metabolic changes that influence myocyte proliferation. METHODS AND RESULTS: In adult mouse cardiomyocytes and human induced pluripotent stem cell cardiomyocytes (hiPS-CMs), cell cycle initiation by ectopic expression of Cyclin B1, Cyclin D1, CDK1, and CDK4 (termed 4F) downregulated oxidative phosphorylation genes and upregulated genes that regulate ancillary biosynthetic pathways of glucose metabolism. Results from metabolic analyses and stable isotope tracing experiments indicate that 4F-mediated cell cycle induction in hiPS-CMs decreases glucose oxidation and oxidative phosphorylation and augments NAD+, glycogen, hexosamine, phospholipid, and serine biosynthetic pathway activity. Interventions that diminish NAD+ synthesis, serine synthesis, or protein O-GlcNAcylation decreased 4F-mediated cell cycle entry. In a gain of function approach, we overexpressed phosphoenolpyruvate carboxykinase 2 (PCK2), which can drive carbon from the Krebs cycle to the glycolytic intermediate pool, and found that PCK2 augments 4F-mediated cell cycle entry. CONCLUSIONS: These findings suggest that a metabolic shift from catabolic to anabolic activity is a critical step for cardiomyocyte cell cycle entry and is required to facilitate proliferation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Vías Biosintéticas , Ciclo Celular , Glucólisis , Humanos , Ratones , Miocitos Cardíacos/metabolismo
12.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877659

RESUMEN

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Cardiotoxinas/efectos adversos , Corazón/efectos de los fármacos , Modelos Biológicos , Técnicas de Cultivo de Tejidos , Adulto , Anciano , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Doxorrubicina/efectos adversos , Femenino , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Porcinos , Trastuzumab/efectos adversos
13.
J Vis Exp ; (157)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32250357

RESUMEN

Many novel drugs fail in clinical studies due to cardiotoxic side effects as the currently available in vitro assays and in vivo animal models poorly predict human cardiac liabilities, posing a multi-billion-dollar burden on the pharmaceutical industry. Hence, there is a worldwide unmet medical need for better approaches to identify drug cardiotoxicity before undertaking costly and time consuming 'first in man' trials. Currently, only immature cardiac cells (human induced pluripotent stem cell-derived cardiomyocytes [hiPSC-CMs]) are used to test therapeutic efficiency and drug toxicity as they are the only human cardiac cells that can be cultured for prolonged periods required to test drug efficacy and toxicity. However, a single cell type cannot replicate the phenotype of the complex 3D heart tissue which is formed of multiple cell types. Importantly, the effect of drugs needs to be tested on adult cardiomyocytes, which have different characteristics and toxicity responses compared to immature hiPSC-CMs. Culturing human heart slices is a promising model of intact human myocardium. This technology provides access to a complete multicellular system that mimics the human heart tissue and reflects the physiological or pathological conditions of the human myocardium. Recently, through optimization of the culture media components and the culture conditions to include continuous electrical stimulation at 1.2 Hz and intermittent oxygenation of the culture medium, we developed a new culture system setup that preserves viability and functionality of human and pig heart slices for 6 days in culture. In the current protocol, we are detailing the method for slicing and culturing pig heart as an example. The same protocol is used to culture slices from human, dog, sheep, or cat hearts. This culture system has the potential to become a powerful predictive human in situ model for acute cardiotoxicity testing that closes the gap between preclinical and clinical testing results.


Asunto(s)
Cardiotoxicidad , Corazón/efectos de los fármacos , Técnicas de Cultivo de Órganos , Animales , Células Cultivadas , Humanos , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ovinos , Porcinos
14.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310161

RESUMEN

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Asunto(s)
Biomimética/métodos , Ventrículos Cardíacos/ultraestructura , Función Ventricular/fisiología , Adulto , Animales , Femenino , Corazón/fisiología , Ventrículos Cardíacos/citología , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Miocardio/citología , Miocardio/ultraestructura , Técnicas de Cultivo de Órganos/métodos , Porcinos , Transcriptoma/fisiología
15.
J Am Heart Assoc ; 7(4)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440036

RESUMEN

BACKGROUND: We have recently found that 3 repeated doses (12×106 each) of c-kitPOS cardiac progenitor cells (CPCs) were markedly more effective than a single dose of 12×106 cells in alleviating postinfarction left ventricular dysfunction and remodeling. However, since the single-dose group received only one third of the total number of CPCs given to the multiple-dose group, it is unknown whether the superior therapeutic efficacy was caused by repeated treatments per se or by administration of a higher total number of CPCs. This issue has major clinical implications because multiple cell injections in patients pose significant challenges, which would be obviated by using 1 large injection. Accordingly, we determined whether the beneficial effects of 3 repeated CPC doses can be recapitulated by 1 large dose containing the same total number of cells. METHODS AND RESULTS: Rats with a 30-day-old myocardial infarction received 3 echo-guided intraventricular infusions, 35 days apart, of vehicle-vehicle-vehicle, 36×106 CPCs-vehicle-vehicle, or 3 equal doses of 12×106 CPCs. Infusion of a single, large dose of CPCs (36×106 cells) produced an initial improvement in left ventricular function, but no further improvement was observed after the second and third infusions (both vehicle). In contrast, each of the 3 doses of CPCs (12×106) caused a progressive improvement in left ventricular function, the cumulative magnitude of which was greater than with a single dose. Unlike the single dose, repeated doses reduced collagen content and immune cell infiltration. CONCLUSIONS: Three repeated doses of CPCs are superior to 1 dose even though the total number of cells infused is the same, possibly because of greater antifibrotic and anti-inflammatory actions.


Asunto(s)
Infarto del Miocardio/cirugía , Miocardio/patología , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/métodos , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Hemodinámica , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fenotipo , Ratas Endogámicas F344 , Recuperación de la Función , Factores de Tiempo
16.
Circ Res ; 119(5): 635-51, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27364016

RESUMEN

RATIONALE: The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE: To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS: Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS: This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.


Asunto(s)
Infarto del Miocardio/terapia , Miocitos Cardíacos/fisiología , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Supervivencia Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Femenino , Masculino , Infarto del Miocardio/patología , Ratas , Ratas Endogámicas F344 , Trasplante de Células Madre/tendencias , Función Ventricular Izquierda/fisiología
17.
Circ Res ; 118(7): 1091-105, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838790

RESUMEN

RATIONALE: Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE: To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS: Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS: The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.


Asunto(s)
Células Madre Adultas/trasplante , Infarto del Miocardio/terapia , Células Madre Adultas/química , Células Madre Adultas/citología , Animales , Recuento de Células , Diferenciación Celular , División Celular , Linaje de la Célula , Replicación del ADN , Femenino , Hemodinámica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Hibridación Fluorescente in Situ , Antígenos Comunes de Leucocito/análisis , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-kit/análisis , Ratas , Ratas Endogámicas F344 , Método Simple Ciego , Factores de Tiempo , Ultrasonografía , Disfunción Ventricular Izquierda/etiología
18.
Basic Res Cardiol ; 106(6): 1355-66, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21779912

RESUMEN

The ultimate goal of prophylactic gene therapy is to confer permanent protection against ischemia. Although gene therapy with inducible nitric oxide synthase (iNOS) is known to protect against myocardial infarction at 3 days and up to 2 months, the long-term effects on myocardial ischemic injury and function are unknown. To address this issue, we created a recombinant adeno-associated viral vector carrying the iNOS gene (rAAV/iNOS), which enables long-lasting transgene expression. The ability of rAAV/iNOS to direct the expression of functional iNOS protein was confirmed in COS-7 cells before in vivo gene transfer. Mice received injections in the anterior LV wall of rAAV/LacZ or rAAV/iNOS; 1 year later, they underwent a 30-min coronary occlusion (O) and 4 h of reperfusion (R). iNOS gene transfer resulted in elevated iNOS protein expression (+3-fold vs. the LacZ group, n = 6; P < 0.05) and iNOS activity (+4.4-fold vs. the LacZ group, n = 6; P < 0.05) 1 year later. Infarct size (% of risk region) was dramatically reduced at 1 year after iNOS gene transfer (13.5 ± 2.2%, n = 12, vs. 41.7 ± 2.9%, n = 10, in the LacZ group; P < 0.05). The infarct-sparing effect of iNOS gene therapy at 1 year was as powerful as that observed 24 h after ischemic preconditioning (six 4-min O/4-min R cycles) (19.3 ± 2.3%, n = 11; P < 0.05). Importantly, compared with the LacZ group (n = 11), iNOS gene transfer (n = 10) had no effect on LV dimensions or function for up to 1 year (at 1 year: FS 34.5 ± 2.0 vs. 34.6 ± 2.6%, EF 57.0 ± 2.0 vs. 59.7 ± 2.9%, LVEDD 4.3 ± 0.1 vs. 4.2 ± 0.2 mm, LVESD 2.8 ± 0.1 vs. 2.9 ± 0.2 mm) (echocardiography). These data demonstrate, for the first time, that rAAV-mediated iNOS gene transfer affords long-term, probably permanent (1 year), cardioprotection without adverse functional consequences, providing a strong rationale for further preclinical testing of prophylactic gene therapy.


Asunto(s)
Terapia Genética/métodos , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/complicaciones , Óxido Nítrico Sintasa de Tipo II/genética , Función Ventricular Izquierda/fisiología , Adenoviridae , Animales , Western Blotting , Técnicas de Transferencia de Gen , Vectores Genéticos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos ICR , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Isquemia Miocárdica/patología
19.
Basic Res Cardiol ; 106(6): 1367-77, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21785893

RESUMEN

Extensive evidence indicates that heme oxygenase-1 (HO-1) exerts potent cytoprotective effects in response to stress. Previous studies have shown that gene therapy with HO-1 protects against myocardial ischemia/reperfusion injury for up to 8 weeks after gene transfer. However, the long-term effects of HO-1 gene therapy on myocardial ischemic injury and function are unknown. To address this issue, we created a recombinant adeno-associated viral vector carrying the HO-1 gene (rAAV/HO-1) that enables long-lasting transgene expression. Mice received injections in the anterior LV wall of rAAV/LacZ (LacZ group) or rAAV/HO-1 (HO-1 group); 1 year later, they were subjected to a 30-min coronary occlusion (O) and 4 h of reperfusion (R). Cardiac HO-1 gene expression was confirmed at 1 month and 1 year after gene transfer by immunoblotting and immunohistochemistry analyses. In the HO-1 group, infarct size (% of risk region) was dramatically reduced at 1 year after gene transfer (11.2 ± 2.1%, n = 12, vs. 44.7 ± 3.6%, n = 8, in the LacZ group; P < 0.05). The infarct-sparing effects of HO-1 gene therapy at 1 year were as powerful as those observed 24 h after ischemic PC (six 4-min O/4-min R cycles) (15.0 ± 1.7%, n = 10). There were no appreciable changes in LV fractional shortening, LV ejection fraction, or LV end-diastolic or end-systolic diameter at 1 year after HO-1 gene transfer as compared to the age-matched controls or with the LacZ group. Histology showed no inflammation in the myocardium 1 year after rAAV/HO-1-mediated gene transfer. These results demonstrate, for the first time, that rAAV-mediated HO-1 gene transfer confers long-term (1 year), possibly permanent, cardioprotection without adverse functional consequences, providing proof of principle for the concept of achieving prophylactic cardioprotection (i.e., "immunization against infarction").


Asunto(s)
Terapia Genética/métodos , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/complicaciones , Óxido Nítrico Sintasa de Tipo II/genética , Función Ventricular Izquierda/fisiología , Adenoviridae , Animales , Western Blotting , Estudios de Seguimiento , Técnicas de Transferencia de Gen , Vectores Genéticos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos ICR , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Isquemia Miocárdica/patología
20.
Basic Res Cardiol ; 106(5): 849-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21516491

RESUMEN

A model of intracoronary stem cell delivery that enables transgenesis/gene targeting would be a powerful tool but is still lacking. To address this gap, we compared intracoronary and intramyocardial delivery of lin(-)/c-kit(+)/GFP(+) cardiac stem cells (CSCs) in a murine model of reperfused myocardial infarction (MI). Lin(-)/c-kit(+)/GFP(+) CSCs were successfully expanded from GFP transgenic hearts and cultured with no detectable phenotypic change for up to ten passages. Intracoronary delivery of CSCs 2 days post-MI resulted in significant alleviation of adverse LV remodeling and dysfunction, which was at least equivalent, if not superior, to that achieved with intramyocardial delivery. Compared with intramyocardial injection, intracoronary infusion was associated with a more homogeneous distribution of CSCs in the infarcted region and a greater increase in viable tissue in this region, suggesting greater formation of new cardiomyocytes. Intracoronary CSC delivery resulted in improved function in the infarcted region, as well as in improved global LV systolic and diastolic function, and in decreased LV dilation and LV expansion index; the magnitude of these effects was similar to that observed after intramyocardial injection. We conclude that, in the murine model of reperfused MI, intracoronary CSC infusion is at least as effective as intramyocardial injection in limiting LV remodeling and improving both regional and global LV function. The intracoronary route appears to be superior in terms of uniformity of cell distribution, myocyte regeneration, and amount of viable tissue in the risk region. To our knowledge, this is the first study to report that intracoronary infusion of stem cells in mice is feasible and effective.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Vasos Coronarios , Modelos Animales , Infarto del Miocardio/terapia , Miocardio/citología , Células Madre/citología , Animales , Movimiento Celular/fisiología , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inyecciones Intraarteriales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/patología , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...