Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Cardiovasc Med ; 10: 1187100, 2023.
Article En | MEDLINE | ID: mdl-37476574

Introduction: Different studies provide conflicting evidence regarding the potential for glucocorticoids (GCs) to increase the risk of cardiovascular diseases. This study performed a systematic review and meta-analysis to determine the correlation between GCs and cardiovascular risk, including major adverse cardiovascular events (MACE), death from any cause, coronary heart disease (CHD), heart failure (HF), and stroke. Methods: We performed a comprehensive search in PubMed and Embase (from inception to June 1, 2022). Studies that reported relative risk (RR) estimates with 95% confidence intervals (CIs) for the associations of interest were included. Results: A total of 43 studies with 15,572,512 subjects were included. Patients taking GCs had a higher risk of MACE (RR = 1.27, 95% CI: 1.15-1.40), CHD (RR = 1.25, 95% CI: 1.11-1.41), and HF (RR = 1.92, 95% CI: 1.51-2.45). The MACE risk increased by 10% (95% CI: 6%-15%) for each additional gram of GCs cumulative dose or by 63% (95% CI: 46%-83%) for an additional 10 µg daily dose. The subgroup analysis suggested that not inhaled GCs and current GCs use were associated with increasing MACE risk. Similarly, GCs were linked to an increase in absolute MACE risk of 13.94 (95% CI: 10.29-17.58) cases per 1,000 person-years. Conclusions: Administration of GCs is possibly related with increased risk for MACE, CHD, and HF but not increased all-cause death or stroke. Furthermore, it seems that the risk of MACE increased with increasing cumulative or daily dose of GCs.

2.
Molecules ; 23(8)2018 Aug 01.
Article En | MEDLINE | ID: mdl-30071619

The mechanism and kinetics for the reaction of the HO2 radical with the ethyl (C2H5) radical have been investigated theoretically. The electronic structure information of the potential energy surface (PES) is obtained at the MP2/6-311++G(d,p) level of theory, and the single-point energies are refined by the CCSD(T)/6-311+G(3df,2p) level of theory. The kinetics of the reaction with multiple channels have been studied by applying variational transition-state theory (VTST) and Rice⁻Ramsperger⁻Kassel⁻Marcus (RRKM) theory over wide temperature and pressure ranges (T = 220⁻3000 K; P = 1 × 10-4⁻100 bar). The calculated results show that the HO2 radical can attack C2H5 via a barrierless addition mechanism to form the energy-rich intermediate IM1 C2H5OOH (68.7 kcal/mol) on the singlet PES. The collisional stabilization intermediate IM1 is the predominant product of the reaction at high pressures and low temperatures, while the bimolecular product P1 C2H5O + OH becomes the primary product at lower pressures or higher temperatures. At the experimentally measured temperature 293 K and in the whole pressure range, the reaction yields P1 as major product, which is in good agreement with experiment results, and the branching ratios are predicted to change from 0.96 at 1 × 10-4 bar to 0.66 at 100 bar. Moreover, the direct H-abstraction product P16 C2H6 + ³O2 on the triplet PES is the secondary feasible product with a yield of 0.04 at the collisional limit of 293 K. The present results will be useful to gain deeper insight into the understanding of the kinetics of the C2H5 + HO2 reaction under atmospheric and practical combustion conditions.


Hydroxyl Radical/chemistry , Models, Theoretical , Kinetics , Quantum Theory
3.
Molecules ; 22(12)2017 Dec 01.
Article En | MEDLINE | ID: mdl-29194394

Theoretical investigations are performed on mechanism and kinetics of the reaction of halogen peroxy radical ClOO with NO radical. The electronic structure information for both of the singlet and triplet potential energy surfaces (PESs) is obtained at the MP2/6-311 + G(2df) level of theory, and the single-point energies are refined by the CCSD(T)/6-311 + G(2df) level. The rate constants for various product channels of the reaction in the pressure range of 1-7600 Torr are predicted. The main results are as follows: On the singlet surface, the addition-elimination mechanism is the most important. First, the N atom of the NO radical can attack the O atom of the ClOO radical to form an energy-riched intermediate IM1 ClOONOtp (21.3 kcal/mol) barrierlessly, then IM1 could isomerizes to IM2 ClOONOcp (22.1 kcal/mol) via a low energy barrier. Both IM1 and IM2 can dissociate to the primary product P1 ClNO + ¹O2 and the secondary product P2 ClO + NO2. On the triplet surface, the direct Cl-abstraction reaction is the most feasible pathway. The Cl-abstraction can take place via a van der Waals complex, ³IM1 ONClOO (4.1 kcal/mol), then it fragments readily to give P1' ClNO + ³O2 with a small barrier. The kinetic calculations show that at low temperatures, the singlet bimolecular product P1 is the primary product, while at high temperatures, the triplet product P1' becomes the primary one; only at high pressures and low temperatures, the unimolecular products IM1 and IM2 can be found with quite small yields. At experimentally measured temperature 213 K, ClNO is the primary product in the whole pressure range, which is consistent with the previous experiment. The present study may be useful for further experimental studies for the title reaction.


Chlorine Compounds/chemistry , Nitric Oxide/chemistry , Oxides/chemistry , Computer Simulation , Isomerism , Kinetics , Models, Chemical , Pressure , Temperature , Thermodynamics
...