Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
J Gastroenterol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727823

BACKGROUND: Chronic pancreatitis (CP) is a progressive disease characterized by pancreatic fibrosis for which effective treatment options are lacking. Mesenchymal stem cells (MSCs) have shown potential for fibrosis treatment but face limitations in clinical application. The high-mobility group box 1 (HMGB1) fragment mobilizes MSCs from bone marrow into the blood and has emerged as a promising therapeutic agent for tissue regeneration in various pathological conditions. The aim of this study was to investigate the potential therapeutic effects of systemic administration of the HMGB1 fragment in a mouse model of CP. METHODS: A caerulein-induced CP mouse model was used, and the HMGB1 fragment was administered by tail vein injection. Parameters such as body weight, pancreatic tissue damage, fibrosis, inflammatory cytokine expression, and collagen-related gene expression were evaluated using various assays, including immunohistochemistry, real-time PCR, serum analysis, and single-cell transcriptome analysis. And the migration of MSCs to the pancreas was evaluated using the parabiosis model. RESULTS: Administration of the HMGB1 fragment was associated with significant improvements in pancreatic tissue damage and fibrosis. It suppressed the expression of inflammatory cytokines and activated platelet-derived growth factor receptor-α+ MSCs, leading to their accumulation in the pancreas. The HMGB1 fragment also shifted gene expression patterns associated with pancreatic fibrosis toward those of the normal pancreas. Systemic administration of the HMGB1 fragment demonstrated therapeutic efficacy in attenuating pancreatic tissue damage and fibrosis in a CP mouse model. CONCLUSION: These findings highlight the potential of the HMGB1 fragment as a therapeutic target for the treatment of CP.

2.
Biochem Biophys Rep ; 33: 101433, 2023 Mar.
Article En | MEDLINE | ID: mdl-36798850

Ischemia-reperfusion injury (IRI) causes massive tissue damage. Renal IRI is the most common type of acute renal injury, and the defects caused by it may progress to chronic kidney disease (CKD). Rodent models of renal IRI, with various patterns, have been used to study the treatment of human kidney injury. A rat model of bilateral IRI, in which the bilateral kidney blood vessels are clamped for 60 min, is widely used, inducing both acute and chronic kidney disease. However, the molecular mechanisms underlying the effects of bilateral IRI on kidney cells have not yet been fully elucidated. This study aimed to perform a whole-transcriptome analysis of the IRI kidney using single-cell RNA sequencing. We found renal parenchymal cells, including those from the proximal tubule, the loop of Henle, and distal tubules, to be damaged by IRI. In addition, we observed significant changes in macrophage population. Our study delineated the detailed cellular and molecular changes that occur in the rat model of bilateral IRI. Collectively, our data and analyses provided a foundation for understanding IRI-related kidney diseases in rat models.

3.
Eur J Immunol ; 52(2): 204-221, 2022 02.
Article En | MEDLINE | ID: mdl-34708880

Multiple embryonic precursors give rise to leukocytes in adults while the lineage-based functional impacts are underappreciated. Mesodermal precursors expressing PDGFRα appear transiently during E7.5-8.5 descend to a subset of Lin- Sca1+ Kit+ hematopoietic progenitors found in adult BM. By analyzing a PDGFRα-lineage tracing mouse line, we here report that PDGFRα-lineage BM F4/80+ SSClo monocytes/macrophages are solely Ly6C+ LFA-1hi Mac-1hi monocytes enriched on the abluminal sinusoidal endothelium while Ly6C- LFA-1lo Mac-1lo macrophages are mostly from non-PDGFRα-lineage in vivo. Monocytes with stronger integrin profiles outcompete macrophages for adhesion on an endothelial monolayer or surfaces coated with ICAM-1-Fc or VCAM-1-Fc. Egress of PDGFRα-lineage-rich monocytes and subsequent differentiation to peripheral macrophages spatially segregates them from non-PDGFRα-lineage BM-resident macrophages and allows functional specialization since macrophages derived from these egressing monocytes differ in morphology, phenotype, and functionality from BM-resident macrophages in culture. Extravasation preference for blood PDGFRα-lineage monocytes varies by tissues and governs the local lineage composition of macrophages. More PDGFRα-lineage classical monocytes infiltrated into skin and colon but not into peritoneum. Accordingly, transcriptomic analytics indicated augmented inflammatory cascades in dermatitis skin of BM-chimeric mice harbouring only PDGFRα-lineage leukocytes. Thus, the PDGFRα-lineage origin biasedly generates monocytes predestined for BM exit to support peripheral immunity following extravasation and macrophage differentiation.


Cell Lineage/immunology , Cell Movement/immunology , Endothelium, Vascular/immunology , Macrophages/immunology , Monocytes/immunology , Receptor, Platelet-Derived Growth Factor alpha/immunology , Animals , Cell Lineage/genetics , Cell Movement/genetics , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor alpha/genetics
4.
Inflamm Regen ; 41(1): 28, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34565478

The liver has a high regenerative ability and can induce spontaneous regression of fibrosis when early liver damage occurs; however, these abilities are lost when chronic liver damage results in decompensated cirrhosis. Cell therapies, such as mesenchymal stem cell (MSC) and macrophage therapies, have attracted attention as potential strategies for mitigating liver fibrosis. Here, we evaluated the therapeutic effects of HMGB1 peptide synthesized from box A of high mobility group box 1 protein. Liver damage and fibrosis were evaluated using a carbon tetrachloride (CCl4)-induced cirrhosis mouse model. The effects of HMGB1 peptide against immune cells were evaluated by single-cell RNA-seq using liver tissues, and those against monocytes/macrophages were further evaluated by in vitro analyses. Administration of HMGB1 peptide did not elicit a rapid response within 36 h, but attenuated liver damage after 1 week and suppressed fibrosis after 2 weeks. Fibrosis regression developed over time, despite continuous liver damage, suggesting that administration of this peptide could induce fibrolysis. In vitro analyses could not confirm a direct effect of HMGB1 peptide against monocyte/macrophages. However, macrophages were the most affected immune cells in the liver, and the number of scar-associated macrophages (Trem2+Cd9+ cells) with anti-inflammatory markers increased in the liver following HMGB1 treatment, suggesting that indirect effects of monocytes/macrophages were important for therapeutic efficacy. Overall, we established a new concept for cell-free therapy using HMGB1 peptide for cirrhosis through the induction of anti-inflammatory macrophages.

5.
Cell Mol Gastroenterol Hepatol ; 12(2): 547-566, 2021.
Article En | MEDLINE | ID: mdl-33862275

BACKGROUND & AIMS: Proper resolution of inflammation is essential to maintaining homeostasis, which is important as a dysregulated inflammatory response has adverse consequences, even being regarded as a hallmark of cancer. However, our picture of dynamic changes during inflammation remains far from comprehensive. METHODS: Here we used single-cell transcriptomics to elucidate changes in distinct cell types and their interactions in a mouse model of chemically induced colitis. RESULTS: Our analysis highlights the stromal cell population of the colon functions as a hub with dynamically changing roles over time. Importantly, we found that Serpina3n, a serine protease inhibitor, is specifically expressed in stromal cell clusters as inflammation resolves, interacting with a potential target, elastase. Indeed, genetic ablation of the Serpina3n gene delays resolution of induced inflammation. Furthermore, systemic Serpina3n administration promoted the resolution of inflammation, ameliorating colitis symptoms. CONCLUSIONS: This study provides a comprehensive, single-cell understanding of cell-cell interactions during colorectal inflammation and reveals a potential therapeutic target that leverages inflammation resolution.


Acute-Phase Proteins/metabolism , Colitis/genetics , Colitis/pathology , Inflammation/genetics , Inflammation/pathology , Serpins/metabolism , Single-Cell Analysis , Transcriptome/genetics , Animals , Cell Communication , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Genetic Predisposition to Disease , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Phenotype , RNA-Seq , Risk Factors , Stromal Cells/metabolism
6.
Biochem Biophys Res Commun ; 534: 186-192, 2021 01 01.
Article En | MEDLINE | ID: mdl-33309273

Platelet-derived growth factor receptor alpha (PDGFRα) is a dominant marker of mesodermal mesenchymal cells in mice. Previous studies demonstrated that PDGFRα-positive (PDGFRα+) mesodermal cells develop not only into mesenchymal cells but also into a subset of total hematopoietic cells (HCs) in the limited period during mouse embryogenesis. However, the precise characteristics of the PDGFRα lineage positive (PDGFRα Lin+) HCs in adult mouse hematopoiesis are largely unknown. In this study, we systematically evaluated the characteristics of PDGFRα Lin+ HCs in the bone marrow and peripheral blood using PDGFRα-CRE; ROSAtdTomato mice. Flow cytometry analysis revealed that PDGFRα Lin+ HCs accounted for approximately 20% of total HCs in both the bone marrow and peripheral blood in adult mice. Compositions of myeloid and lymphoid subpopulations among CD45+ mononuclear cells were almost identical in both PDGFRα Lin+ and PDGFRα Lin- cells. Single-cell RNA-sequencing analysis also demonstrated that the transcriptomic signatures of the PDGFRα Lin+ HCs in the peripheral blood largely overlapped with those of the PDGFRα Lin- HCs, suggesting equivalent functions of the PDGFRα Lin+ and PDGFRα Lin- HCs. Although pathophysiological activities of the PDGFRα Lin + HCs were not evaluated, our data clearly demonstrate a significant role of the PDGFRα Lin + HCs in physiological hematopoiesis in adult mice.


Hematopoiesis , Hematopoietic Stem Cells/physiology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Animals , Cell Lineage , Female , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Male , Mesoderm/cytology , Mice , RNA-Seq , Single-Cell Analysis
7.
Sci Rep ; 9(1): 12497, 2019 08 29.
Article En | MEDLINE | ID: mdl-31467337

H2O2 permeation through a cell membrane significantly affects living organisms, and permeation is controlled by the physico-chemical nature of lipids and other membrane components. We investigated the molecular relationship between H2O2 permeation and lipid membrane structure using three oxidized lipids. POVPC and PazePC act as intra- and inter-molecular permeation promoters, respectively; however, their underlying mechanisms were different. The former changed the partition equilibrium, while the latter changed the permeation pathway. PoxnoPC inhibited permeation under our experimental conditions via an intra-molecular configuration change. Thus, both intra- and inter-molecular processes were found to control the role of oxidized lipids as inhibitors and promoters towards H2O2 permeation with different mechanisms depending on structure and composition. Here, we identified two independent H2O2 permeation routes: (i) permeation through lipid membrane with increased partition coefficient by intra-molecular configurational change and (ii) diffusion through pores (water channels) formed by inter-molecular configurational change of oxidized lipids. We provide new insight into how biological cells control permeation of molecules through intra- and inter-molecular configurational changes in the lipid membrane. Thus, by employing a rational design for both oxidized lipids and other components, the permeation behaviour of H2O2 and other ions and molecules through a lipid membrane could be controlled.


Cell Membrane/metabolism , Hydrogen Peroxide/metabolism , Membrane Lipids/metabolism , Cell Membrane/chemistry , Ions/chemistry , Ions/metabolism , Membrane Lipids/chemistry , Oxidation-Reduction , Permeability , Thermodynamics
8.
Cancer Sci ; 110(9): 2856-2866, 2019 Sep.
Article En | MEDLINE | ID: mdl-31314163

4-Hydroxynonenal (HNE) is an important product of plasma membrane lipid peroxidation, which is a cause of cell and tissue injury. Mitochondrial DNA (mtDNA)-depleted ρ0 cells were established using human cervical cancer and oral squamous cell carcinoma cell lines. We investigated the effect of reactive oxygen species in ρ0 cells, especially the mechanism of hydrogen peroxide (H2 O2 )-mediated cell death. These cell were subjected to high oxidative stress and, compared with their parental cells, showed greater sensitivity to H2 O2 and high lipid peroxidation. Upregulation of HNE in the plasma membrane was observed prior to the increase in intracellular H2 O2 . The amount of oxidized lipid present changed H2 O2 permeability and administration of oxidized lipid led to further cell death after treatment with H2 O2 . Expression levels of lipoxygenase ALOX genes (ie ALOX5, ALOX12, and ALOX15) were upregulated in ρ0 cells, as were expression levels of ALOX12 and ALOX15 proteins. ALOX5 protein was mainly distributed in the nucleus, while ALOX12 and ALOX15 proteins were distributed in the nucleus and the cytoplasm. Although expression of COX2 gene was upregulated, its protein expression did not increase. ALOX (especially ALOX15) may be involved in the sensitivity of cancer cells to treatment. These data offer promise for the development of novel anticancer agents by altering the oxidation state of the plasma membrane. Our results showed that lipid peroxidation status is important for H2 O2 sensitivity and that ALOX15 is involved in lipid peroxidation status.


Apoptosis/drug effects , Cell Membrane Permeability/genetics , DNA, Mitochondrial/genetics , Hydrogen Peroxide/administration & dosage , Lipid Peroxidation/genetics , Neoplasms/pathology , Aldehydes/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Drug Resistance, Neoplasm , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacokinetics , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Oxidative Stress/drug effects , Phospholipid Ethers/administration & dosage , Up-Regulation
9.
Biochem Biophys Res Commun ; 512(2): 326-330, 2019 04 30.
Article En | MEDLINE | ID: mdl-30890337

Umbilical cord blood contains mesenchymal stem/stromal cells (MSCs) in addition to hematopoietic stem cells, serving as an attractive tool for regenerative medicine. As umbilical cord blood originates from fetus, abundant MSCs are expected to circulate in fetus. However, the properties of circulating MSCs in fetus have not been fully examined. In the present study, we aimed to analyze circulating MSCs, marked by the expression of platelet-derived growth factor receptor α (PDGFRα), during fetal development. Using PDGFRα GFP knock-in mice, we quantified the number of circulating PDGFRα positive MSCs during development. We further performed whole transcriptome analysis of circulating MSCs at single cell levels. We found that abundant PDGFRα positive cells circulate in embryo and diminish immediately after birth. In addition, single cell RNA-sequencing revealed transcriptional heterogeneity of MSCs in fetal circulation. These data lay a foundation to analyze the function of circulating MSCs during development.


Fetal Blood/cytology , Fetal Blood/metabolism , Fetus/cytology , Fetus/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Cell Count , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regenerative Medicine , Single-Cell Analysis , Transcription, Genetic
10.
EMBO Rep ; 20(3)2019 03.
Article En | MEDLINE | ID: mdl-30622218

Promoter-associated long non-coding RNAs (lncRNAs) regulate the expression of adjacent genes; however, precise roles of these lncRNAs in skeletal muscle remain largely unknown. Here, we characterize a promoter-associated lncRNA, Myoparr, in myogenic differentiation and muscle disorders. Myoparr is expressed from the promoter region of the mouse and human myogenin gene, one of the key myogenic transcription factors. We show that Myoparr is essential both for the specification of myoblasts by activating neighboring myogenin expression and for myoblast cell cycle withdrawal by activating myogenic microRNA expression. Mechanistically, Myoparr interacts with Ddx17, a transcriptional coactivator of MyoD, and regulates the association between Ddx17 and the histone acetyltransferase PCAF Myoparr also promotes skeletal muscle atrophy caused by denervation, and knockdown of Myoparr rescues muscle wasting in mice. Our findings demonstrate that Myoparr is a novel key regulator of muscle development and suggest that Myoparr is a potential therapeutic target for neurogenic atrophy in humans.


Cell Differentiation/genetics , Muscle Development/genetics , Myogenin/genetics , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Animals , Cell Cycle , Cell Line , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Developmental , Humans , Mice, Inbred C57BL , Models, Biological , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Protein Binding , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/metabolism , p300-CBP Transcription Factors/metabolism
11.
Sci Rep ; 8(1): 17765, 2018 12 10.
Article En | MEDLINE | ID: mdl-30531792

Mesenchymal stem cells (MSCs), which can differentiate into tri-lineage (osteoblast, adipocyte, and chondrocyte) and suppress inflammation, are promising tools for regenerative medicine. MSCs are phenotypically diverse based on their tissue origins. However, the mechanisms underlying cell-type-specific gene expression patterns are not fully understood due to the lack of suitable strategy to identify the diversity. In this study, we investigated gene expression programs and chromatin accessibilities of MSCs by whole-transcriptome RNA-seq analysis and an assay for transposase-accessible chromatin using sequencing (ATAC-seq). We isolated MSCs from four tissues (femoral and vertebral bone marrow, adipose tissue, and lung) and analysed their molecular signatures. RNA-seq identified the expression of MSC markers and both RNA-seq and ATAC-seq successfully clustered the MSCs based on their tissue origins. Interestingly, clustering based on tissue origin was more accurate with chromatin accessibility signatures than with transcriptome profiles. Furthermore, we identified transcription factors potentially involved in establishing cell-type specific chromatin structures. Thus, epigenome analysis is useful to analyse MSC identity and can be utilized to characterize these cells for clinical use.


Chromatin/genetics , Chromatin/metabolism , Mesenchymal Stem Cells/metabolism , Adipocytes/metabolism , Adipocytes/physiology , Adipose Tissue/metabolism , Adipose Tissue/physiology , Animals , Biomarkers/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Cluster Analysis , Femur/metabolism , Femur/physiology , Gene Expression/genetics , Gene Expression/physiology , Gene Expression Profiling/methods , Lung/metabolism , Lung/physiology , Mice , Mice, Inbred C57BL , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Transcriptome/physiology
12.
Cytogenet Genome Res ; 153(1): 1-9, 2017.
Article En | MEDLINE | ID: mdl-29073611

Chromosomal insertions are rare structural rearrangements, and the molecular mechanisms underlying their origin are unknown. In this study, we used whole genome sequencing to analyze breakpoints and junction sequences in 4 patients with chromosomal insertions. Our analysis revealed that none of the 4 cases involved a simple insertion mediated by a 3-chromosomal breakage and rejoining events. The inserted fragments consisted of multiple pieces derived from a localized genomic region, which were shuffled and rejoined in a disorderly fashion with variable copy number alterations. The junctions were blunt ended or with short microhomologies or short microinsertions, suggesting the involvement of nonhomologous end-joining. In one case, analysis of the parental origin of the chromosomes using nucleotide variations within the insertion revealed that maternal chromosomal segments were inserted into the paternal chromosome. This patient also carried both maternal alleles, suggesting the presence of zygotic trisomy. These data indicate that chromosomal shattering may occur in association with trisomy rescue in the early postzygotic stage.


Chromosome Breakage , Chromosome Breakpoints , Chromothripsis , DNA Repair/genetics , Genome, Human/genetics , DNA Copy Number Variations/genetics , Female , Humans , Male , Mutagenesis, Insertional/genetics , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing
14.
Mol Cytogenet ; 10: 15, 2017.
Article En | MEDLINE | ID: mdl-28465723

BACKGROUND: Complex genomic rearrangements (CGRs) consisting of interstitial triplications in conjunction with uniparental isodisomy (isoUPD) have rarely been reported in patients with multiple congenital anomalies (MCA)/intellectual disability (ID). One-ended DNA break repair coupled with microhomology-mediated break-induced replication (MMBIR) has been recently proposed as a possible mechanism giving rise to interstitial copy number gains and distal isoUPD, although only a few cases providing supportive evidence in human congenital diseases with MCA have been documented. CASE PRESENTATION: Here, we report on the chromosomal microarray (CMA)-based identification of the first known case with concurrent interstitial duplication at 1q42.12-q42.2 and triplication at 1q42.2-q43 followed by isoUPD for the remainder of chromosome 1q (at 1q43-qter). In distal 1q duplication/triplication overlapping with 1q42.12-q43, variable clinical features have been reported, and our 25-year-old patient with MCA/ID presented with some of these frequently described features. Further analyses including the precise mapping of breakpoint junctions within the CGR in a sequence level suggested that the CGR found in association with isoUPD in our case is a triplication with flanking duplications, characterized as a triplication with a particularly long duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure. Because microhomology was observed in both junctions between the triplicated region and the flanking duplicated regions, our case provides supportive evidence for recently proposed replication-based mechanisms, such as MMBIR, underlying the formation of CGRs + isoUPD implicated in chromosomal disorders. CONCLUSIONS: To the best of our knowledge, this is the first case of CGRs + isoUPD observed in 1q and having DUP-TRP/INV-DUP structure with a long proximal duplication, which supports MMBIR-based model for genomic rearrangements. Molecular cytogenetic analyses using CMA containing single-nucleotide polymorphism probes with further analyses of the breakpoint junctions are recommended in cases suspected of having complex chromosomal abnormalities based on discrepancies between clinical and conventional cytogenetic findings.

15.
Anal Chim Acta ; 969: 18-25, 2017 May 29.
Article En | MEDLINE | ID: mdl-28411626

Hydrogen sulfide (H2S) signaling involves polysulfide (RSSnSR') formation on various proteins. However, the current lack of sensitive polysulfide detection assays poses methodological challenges for understanding sulfane sulfur homeostasis and signaling. We developed a novel combined assay by modifying Sulfide Antioxidant Buffer (SAOB) to produce an "Elimination Method of Sulfide from Polysulfide" (EMSP) treatment solution that liberates sulfide, followed with methylene blue (MB) sulfide detection assay. The combined EMSP-MB sulfide detection assay performed on low molecular weight sulfur species showed that sulfide was produced from trisulfide compounds such as glutathione trisulfide and diallyl trisulfide, but not from the thiol compounds such as cysteine, cystine and glutathione. In the case of plasma proteins, this novel combined detection assay revealed that approximately 14.7, 1.7, 3.9, 3.7 sulfide mol/mol released from human serum albumin, α1-anti-trypsin, α1-acid glycoprotein and ovalbumin, respectively, suggesting that serum albumin is a major pool of polysulfide in human blood circulation. Taken together with the results of albumins of different species, the liberated sulfide has a good correlation with cysteine instead of methionine, indicating the site of incorporation of polysulfide is cysteine. With this novel sulfide detention assay, approximately 8,000, 120 and 1100 µM of polysulfide concentrations was quantitated in human healthy plasma, saliva and tear, respectively. Our promising polysulfide specific detection assay can be a very important tool because quantitative determination of polysulfide sheds light on the functional consequence of protein-bound cysteine polysulfide and expands the research area of reactive oxygen to reactive polysulfide species.


Albumins/chemistry , Blood Proteins/chemistry , Sulfides/analysis , Humans , Hydrogen Sulfide , Saliva/chemistry , Sulfur , Tears/chemistry
16.
J Hum Genet ; 62(9): 851-855, 2017 Sep.
Article En | MEDLINE | ID: mdl-28446798

Adams-Oliver syndrome (AOS, OMIM; 100300) is a rare genetic disease characterized by aplasia cutis congenita, terminal transverse limb defects and cutis marmorata with vascular anomalies such as congenital heart defects. The etiology of this syndrome has remained largely unknown but defective Notch signaling during vascular formation has been suggested. Here we describe a sporadic Japanese newborn case with clinically diagnosed AOS. Trio whole-exome sequencing identified a de novo, novel, heterozygous missense mutation in the Delta-like 4 ligand gene (DLL4 c.572G>A, p.Arg191His) in the patient. DLL4 functions as a requisite ligand for NOTCH1 receptor, which is essential for vascular formation. Amino acid substitution of Arg191 to His was predicted by molecular models to interfere with direct binding between DLL4 and NOTCH1. DLL4 has recently been identified as a causative gene of an autosomal dominant type of AOS with milder symptoms. The case described here showed gradual recovery from skull defects after birth and no psychomotor developmental delay has been observed. This is the second report of an AOS case with DLL4 mutation, and the phenotypic characteristics between the two cases are compared and discussed.


Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Genetic Association Studies , Intercellular Signaling Peptides and Proteins/genetics , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Mutation, Missense , Scalp Dermatoses/congenital , Adaptor Proteins, Signal Transducing , Alleles , Amino Acid Substitution , Calcium-Binding Proteins , DNA Mutational Analysis , Female , Genotype , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Japan , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation , Radiography , Scalp Dermatoses/diagnosis , Scalp Dermatoses/genetics , Tomography, X-Ray Computed
17.
Biochem Biophys Res Commun ; 479(3): 578-583, 2016 Oct 21.
Article En | MEDLINE | ID: mdl-27666483

Recently, hydropersulfide (RSSH) was found to exist in mammalian tissues and fluids. Cysteine hydropersulfide can be found in free cysteine residues as well as in proteins, and it has potent antioxidative activity. Human serum albumin (HSA) is the most abundant protein in mammalian serum. HSA possesses a free thiol group in Cys-34 that could be a site for hydropersulfide formation. HSA hydropersulfide of high purity as a positive control was prepared by treatment of HSA with Na2S. The presence of HSA hydropersulfide was confirmed by spectroscopy and ESI-TOFMS analysis where molecular weights of HSA hydropersulfide by increments of approximately 32 Da (Sulfur atom) were detected. The fluorescent probe results showed that Alexa Fluor 680 conjugated maleimide (Red-Mal) was a suitable assay and bromotrimethylammoniumbimane bromide appeared to be a selective reagent for hydropersulfide. The effect of oxidative stress related disease on the existence of albumin hydropersulfides was examined in rat 5/6 nephrectomy model of chronic kidney disease (CKD). Interestingly, the level of hydropersulfides in rat 5/6 nephrectomy model serum was decreased by a uremic toxin that increases oxidative stress in rat 5/6 nephrectomy model. Furthermore, we demonstrated that the levels of HSA hydropersulfide in human subjects were reduced in CKD but restored by hemodialysis using Red-Mal assay. We conclude that HSA hydropersulfide could potentially play an important role in biological anti-oxidative defense, and it is a promising diagnostic and therapeutic marker of oxidative diseases.


Free Radical Scavengers/chemistry , Renal Insufficiency, Chronic/metabolism , Serum Albumin/chemistry , Sulfides/chemistry , Adult , Aged , Aged, 80 and over , Animals , Female , Fluorescent Dyes/chemistry , Humans , Male , Middle Aged , Molecular Weight , Oxidants/chemistry , Oxidative Stress , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Renal Dialysis , Renal Insufficiency, Chronic/therapy , Spectrometry, Mass, Electrospray Ionization , Sulfhydryl Compounds/chemistry
18.
Front Genet ; 7: 125, 2016.
Article En | MEDLINE | ID: mdl-27462347

Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure-single-stranded "hairpin" or double-stranded "cruciform"-has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms.

19.
J Hum Genet ; 61(8): 701-3, 2016 Aug.
Article En | MEDLINE | ID: mdl-27053290

Hypertension and brachydactyly syndrome (HTNB) with short stature is an autosomal-dominant disorder. Mutations in the PDE3A gene located at 12p12.2-p11.2 were recently identified in HTNB families. We found a novel heterozygous missense mutation c.1336T>C in exon 4 of the PDE3A gene in a Japanese family with multiple HTNB patients. This mutation was found to be completely linked to the family members who inherited this condition. The mutation, resulting in p.Ser446Pro, was located within the cluster region of reported mutations. This mutation may also affect the phosphodiesterase activity of PDE3A to reduce the cyclic AMP level in the cell and thereby influencing the development of limbs and the function of the cardiovascular system.


Brachydactyly/diagnosis , Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Hypertension/diagnosis , Hypertension/genetics , Mutation , Amino Acid Substitution , Child , DNA Mutational Analysis , Exome , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Syndrome
20.
Reprod Med Biol ; 15(1): 13-19, 2016 01.
Article En | MEDLINE | ID: mdl-29259418

Although embryo screening by preimplantation genetic diagnosis (PGD) has become the standard technique for the treatment of recurrent pregnancy loss in couples with a balanced gross chromosomal rearrangement, the implantation and pregnancy rates of PGD using conventional fluorescence in situ hybridization (FISH) remain suboptimal. Comprehensive molecular testing, such as array comparative genomic hybridization and next-generation sequencing, can improve these rates, but amplification bias in the whole genome amplification method remains an obstacle to accurate diagnosis. Recent advances in amplification procedures combined with improvements in the microarray platform and analytical method have overcome the amplification bias, and the data accuracy of the comprehensive PGD method has reached the level of clinical laboratory testing. Currently, comprehensive PGD is also applied to recurrent pregnancy loss due to recurrent fetal aneuploidy or infertility with recurrent implantation failure, known as preimplantation genetic screening. However, there are still numerous problems to be solved, including misdiagnosis due to somatic mosaicism, cell cycle-related background noise, and difficulty in diagnosis of polyploidy. The technology for comprehensive PGD also requires further improvement.

...