Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923140

RESUMEN

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Asunto(s)
Antígeno 2 Relacionado con Fos , Factores de Transcripción GATA , Glutarredoxinas , Homeostasis , Proteínas Hierro-Azufre , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118847, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910989

RESUMEN

The synthesis and trafficking of iron-sulfur (Fe-S) clusters in both prokaryotes and eukaryotes requires coordination within an expanding network of proteins that function in the cytosol, nucleus, mitochondria, and chloroplasts in order to assemble and deliver these ancient and essential cofactors to a wide variety of Fe-S-dependent enzymes and proteins. This review focuses on the evolving roles of two ubiquitous classes of proteins that operate in this network: CGFS glutaredoxins and BolA proteins. Monothiol or CGFS glutaredoxins possess a Cys-Gly-Phe-Ser active site that coordinates an Fe-S cluster in a homodimeric complex. CGFS glutaredoxins also form [2Fe-2S]-bridged heterocomplexes with BolA proteins, which possess an invariant His and an additional His or Cys residue that serve as cluster ligands. Here we focus on recent discoveries in bacteria, fungi, humans, and plants that highlight the shared and distinct roles of CGFS glutaredoxins and BolA proteins in Fe-S cluster biogenesis, Fe-S cluster storage and trafficking, and Fe-S cluster signaling to transcriptional factors that control iron metabolism--.


Asunto(s)
Citosol/química , Glutarredoxinas/genética , Proteínas Hierro-Azufre/genética , Transporte de Proteínas/genética , Glutarredoxinas/química , Humanos , Proteínas Hierro-Azufre/química , Ligandos , Modelos Moleculares , Células Procariotas/química , Transducción de Señal/genética , Azufre/metabolismo
3.
Curr Opin Chem Biol ; 55: 189-201, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32234663

RESUMEN

Iron homeostasis in fungi involves balancing iron uptake and storage with iron utilization to achieve adequate, nontoxic levels of this essential nutrient. Extensive work in the nonpathogenic yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe has uncovered unique iron regulation networks for each organism that control iron metabolism via distinct molecular mechanisms. However, common themes have emerged from these studies. The activities of all fungal iron-sensing transcription factors characterized to date are regulated via iron-sulfur cluster signaling. Furthermore, glutaredoxins often play a key role in relaying the intracellular iron status to these DNA-binding proteins. Recent work with fungal pathogens, including Candida and Aspergillus species and Cryptococcus neoformans, has revealed novel iron regulation mechanisms, yet similar roles for iron-sulfur clusters and glutaredoxins in iron signaling have been confirmed. This review will focus on these recent discoveries regarding iron regulation pathways in both pathogenic and nonpathogenic fungi.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hongos/metabolismo , Glutarredoxinas/metabolismo , Hierro/química , Hierro/metabolismo , Azufre/química , Transporte Biológico , Técnicas Biosensibles , Proteínas de Unión al ADN/metabolismo , Homeostasis , Dominios Proteicos , Transducción de Señal , Factores de Transcripción/metabolismo
4.
J Biol Inorg Chem ; 24(6): 809-815, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31493153

RESUMEN

The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe-2S]-bridged Grx3-Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron-sulfur cluster binding and interaction with [2Fe-2S]-Grx3-Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe-2S] cluster binding, while only one cysteine is required for interaction with the [2Fe-2S]-Grx3-Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron-sulfur cluster transfer from Grx3-Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron-sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2-Grx3-Bol2 intermediate, while the replacement of both cysteines abrogates both the iron-sulfur cluster exchange and the protein-protein interactions between Aft2 and Grx3-Bol2.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Cromatografía en Gel , Dicroismo Circular , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Plásmidos/genética , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/química
5.
Methods Enzymol ; 599: 327-353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746245

RESUMEN

Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.


Asunto(s)
Dicroismo Circular/métodos , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glutarredoxinas/química , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/química , Cinética , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Termodinámica
6.
J Biol Chem ; 292(38): 15990-15991, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939752

RESUMEN

The RNA-binding iron regulatory proteins IRP1 and IRP2 are inactivated by either Fe-S cluster insertion or protein degradation mediated by the E3 ligase component FBXL5. However, the mechanisms for coordination between Fe-S cluster assembly, FBXL5, and IRP1/IRP2 activity are poorly defined. A new study reveals that FBXL5 plays a critical role in limiting IRP1 and IRP2 overaccumulation when cytosolic Fe-S cluster assembly is impaired in order to maintain optimal iron levels for cell viability.


Asunto(s)
Hierro/metabolismo , Supervivencia Celular , Citosol/metabolismo , Proteínas F-Box/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Azufre/metabolismo
7.
Mol Cell ; 67(6): 962-973.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28918898

RESUMEN

In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas Fúngicas/metabolismo , Glutatión/metabolismo , Glicoproteínas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Canales de Translocación SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/enzimología , Difusión Facilitada , Proteínas Fúngicas/genética , Disulfuro de Glutatión/metabolismo , Glicoproteínas/genética , Proteínas HSP70 de Choque Térmico/genética , Peróxido de Hidrógeno/metabolismo , Membranas Intracelulares/enzimología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Respuesta de Proteína Desplegada
8.
Metallomics ; 9(8): 1096-1105, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28725905

RESUMEN

The fission yeast Schizosaccharomyces pombe expresses the CCAAT-binding factor Php4 in response to iron deprivation. Php4 forms a transcription complex with Php2, Php3, and Php5 to repress the expression of iron proteins as a means to economize iron usage. Previous in vivo results demonstrate that the function and location of Php4 are regulated in an iron-dependent manner by the cytosolic CGFS type glutaredoxin Grx4. In this study, we aimed to biochemically define these protein-protein and protein-metal interactions. Grx4 was found to bind a [2Fe-2S] cluster with spectroscopic features similar to other CGFS glutaredoxins. Grx4 and Php4 also copurify as a complex with a [2Fe-2S] cluster that is spectroscopically distinct from the cluster on Grx4 alone. In vitro titration experiments suggest that these Fe-S complexes may not be interconvertible in the absence of additional factors. Furthermore, conserved cysteines in Grx4 (Cys172) and Php4 (Cys221 and Cys227) are necessary for Fe-S cluster binding and stable complex formation. Together, these results show that Grx4 controls Php4 function through binding of a bridging [2Fe-2S] cluster.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Cisteína/metabolismo , Regulación Fúngica de la Expresión Génica , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Unión a CCAAT/genética , Glutarredoxinas/genética , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
9.
Biochemistry ; 55(49): 6869-6879, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951647

RESUMEN

Two ubiquitous protein families have emerged as key players in iron metabolism, the CGFS-type monothiol glutaredoxins (Grxs) and the BolA proteins. Monothiol Grxs and BolA proteins form heterocomplexes that have been implicated in Fe-S cluster assembly and trafficking. The Escherichia coli genome encodes members of both of these proteins families, namely, the monothiol glutaredoxin Grx4 and two BolA family proteins, BolA and IbaG. Previous work has demonstrated that E. coli Grx4 and BolA interact as both apo and [2Fe-2S]-bridged heterodimers that are spectroscopically distinct from [2Fe-2S]-bridged Grx4 homodimers. However, the physical and functional interactions between Grx4 and IbaG are uncharacterized. Here we show that co-expression of Grx4 with IbaG yields a [2Fe-2S]-bridged Grx4-IbaG heterodimer. In vitro interaction studies indicate that IbaG binds the [2Fe-2S] Grx4 homodimer to form apo Grx4-IbaG heterodimer as well as the [2Fe-2S] Grx4-IbaG heterodimer, altering the cluster stability and coordination environment. Additionally, spectroscopic and mutagenesis studies provide evidence that IbaG ligates the Fe-S cluster via the conserved histidine that is present in all BolA proteins and by a second conserved histidine that is present in the H/C loop of two of the four classes of BolA proteins. These results suggest that IbaG may function in Fe-S cluster assembly and trafficking in E. coli as demonstrated for other BolA homologues that interact with monothiol Grxs.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Histidina/química , Proteínas Hierro-Azufre/química , Factores de Transcripción/química , Calorimetría , Dicroismo Circular , Peso Molecular , Análisis Espectral/métodos
10.
Biochemistry ; 55(33): 4720-30, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27490699

RESUMEN

The myeloablative agent busulfan (1,4-butanediol dimethanesulfonate) is an old drug that is used routinely to eliminate cancerous bone marrow prior to hematopoietic stem cell transplant. The myeloablative activity and systemic toxicity of busulfan have been ascribed to its ability to cross-link DNA. In contrast, here we demonstrate that incubation of busulfan with the thiol redox proteins glutaredoxin or thioredoxin at pH 7.4 and 37 °C results in the formation of putative S-tetrahydrothiophenium adducts at their catalytic Cys residues, followed by ß-elimination to yield dehydroalanine. Both proteins contain a second Cys, in their catalytic C-X-X-C motif, which reacts with the dehydroalanine, the initial Cys adduct with busulfan, or the S-tetrahydrothiophenium, to form novel intramolecular cross-links. The reactivity of the dehydroalanine (DHA) formed is further demonstrated by adduction with glutathione to yield a lanthionine and by a novel reaction with the reducing agent tris(2-carboxyethyl)phosphine (TCEP), which yields a phosphine adduct via Michael addition to the DHA. Formation of a second quaternary organophosphonium salt via nucleophilic substitution with TCEP on the initial busulfan-protein adduct or on the THT(+)-Redoxin species is also observed. These results reveal a rich potential for reactions of busulfan with proteins in vitro, and likely in vivo. It is striking that several of the chemically altered protein products retain none of the atoms of busulfan, in contrast to typical drug-protein adducts or traditional protein modification reagents. In particular, the ability of a clinically used drug to convert Cys to dehydrolanine in intact proteins, and its subsequent reaction with biological thiols, is unprecedented.


Asunto(s)
Alanina/análogos & derivados , Busulfano/química , Cisteína/química , Agonistas Mieloablativos/química , Sulfuros/química , Alanina/química , Humanos , Espectrometría de Masas en Tándem
11.
J Biol Chem ; 290(46): 27829-40, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26396185

RESUMEN

The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways.


Asunto(s)
Citosol/metabolismo , Glutatión/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
12.
Proc Natl Acad Sci U S A ; 111(11): 4043-8, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591629

RESUMEN

The paralogous iron-responsive transcription factors Aft1 and Aft2 (activators of ferrous transport) regulate iron homeostasis in Saccharomyces cerevisiae by activating expression of iron-uptake and -transport genes when intracellular iron is low. We present the previously unidentified crystal structure of Aft2 bound to DNA that reveals the mechanism of DNA recognition via specific interactions of the iron-responsive element with a Zn(2+)-containing WRKY-GCM1 domain in Aft2. We also show that two Aft2 monomers bind a [2Fe-2S] cluster (or Fe(2+)) through a Cys-Asp-Cys motif, leading to dimerization of Aft2 and decreased DNA-binding affinity. Furthermore, we demonstrate that the [2Fe-2S]-bridged heterodimer formed between glutaredoxin-3 and the BolA-like protein Fe repressor of activation-2 transfers a [2Fe-2S] cluster to Aft2 that facilitates Aft2 dimerization. Previous in vivo findings strongly support the [2Fe-2S] cluster-induced dimerization model; however, given the available evidence, Fe(2+)-induced Aft2 dimerization cannot be completely ruled out as an alternative Aft2 inhibition mechanism. Taken together, these data provide insight into the molecular mechanism for iron-dependent transcriptional regulation of Aft2 and highlight the key role of Fe-S clusters as cellular iron signals.


Asunto(s)
ADN/química , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transactivadores/química , Cromatografía en Gel , Clonación Molecular , Cristalización , ADN/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Transactivadores/metabolismo , Ultracentrifugación
13.
Curr Opin Microbiol ; 16(6): 662-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23962819

RESUMEN

Regulation of iron metabolism in Saccharomyces cerevisiae is achieved at the transcriptional level by low (Aft1 and Aft2) and high iron-sensing (Yap5) transcription factors, and at the post-transcriptional level by mRNA-binding proteins (Cth1 and Cth2). In this review we highlight recent studies unveiling the critical role that iron-sulfur clusters play in control of Aft1/2 and Yap5 activity, as well as the complex relationship between iron homeostasis and thiol redox metabolism. In addition, new insights into the localization and regulation of Cth1/Cth2 have added another layer of complexity to the cell's adaptation to iron deficiency. Finally, biophysical studies on subcellular iron speciation changes in response to environmental and genetic factors have further illuminated the elaborate control mechanisms required to manage iron bioavailability in the cell.


Asunto(s)
Homeostasis , Hierro/metabolismo , Saccharomyces cerevisiae/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
14.
Met Ions Life Sci ; 12: 241-78, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23595675

RESUMEN

This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Animales , Hemo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae , Azufre/metabolismo
15.
Dalton Trans ; 42(9): 3107-15, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23292141

RESUMEN

Monothiol glutaredoxins (Grxs) are proposed to function in Fe-S cluster storage and delivery, based on their ability to exist as apo monomeric forms and dimeric forms containing a subunit-bridging [Fe(2)S(2)](2+) cluster, and to accept [Fe(2)S(2)](2+) clusters from primary scaffold proteins. In addition yeast cytosolic monothiol Grxs interact with Fra2 (Fe repressor of activation-2), to form a heterodimeric complex with a bound [Fe(2)S(2)](2+) cluster that plays a key role in iron sensing and regulation of iron homeostasis. In this work, we report on in vitro UV-visible CD studies of cluster transfer between homodimeric monothiol Grxs and members of the ubiquitous A-type class of Fe-S cluster carrier proteins ((Nif)IscA and SufA). The results reveal rapid, unidirectional, intact and quantitative cluster transfer from the [Fe(2)S(2)](2+) cluster-bound forms of A. thaliana GrxS14, S. cerevisiae Grx3, and A. vinelandii Grx-nif homodimers to A. vinelandii(Nif)IscA and from A. thaliana GrxS14 to A. thaliana SufA1. Coupled with in vivo evidence for interaction between monothiol Grxs and A-type Fe-S cluster carrier proteins, the results indicate that these two classes of proteins work together in cellular Fe-S cluster trafficking. However, cluster transfer is reversed in the presence of Fra2, since the [Fe(2)S(2)](2+) cluster-bound heterodimeric Grx3-Fra2 complex can be formed by intact [Fe(2)S(2)](2+) cluster transfer from (Nif)IscA. The significance of these results for Fe-S cluster biogenesis or repair and the cellular regulation of the Fe-S cluster status are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hierro/metabolismo , Compuestos de Sulfhidrilo/química , Azufre/metabolismo , Azotobacter vinelandii , Proteínas Bacterianas/química , Transporte Biológico , Multimerización de Proteína , Estructura Cuaternaria de Proteína
16.
Antioxid Redox Signal ; 18(13): 1699-711, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23198979

RESUMEN

SIGNIFICANCE: The thioredoxin (TRX) and glutathione (GSH) pathways are universally conserved thiol-reductase systems that drive an array of cellular functions involving reversible disulfide formation. Here we consider these pathways in Saccharomyces cerevisiae, focusing on their cell compartment-specific functions, as well as the mechanisms that explain extreme differences of redox states between compartments. RECENT ADVANCES: Recent work leads to a model in which the yeast TRX and GSH pathways are not redundant, in contrast to Escherichia coli. The cytosol possesses full sets of both pathways, of which the TRX pathway is dominant, while the GSH pathway acts as back up of the former. The mitochondrial matrix also possesses entire sets of both pathways, in which the GSH pathway has major role in redox control. In both compartments, GSH has also nonredox functions in iron metabolism, essential for viability. The endoplasmic reticulum (ER) and mitochondrial intermembrane space (IMS) are sites of intense thiol oxidation, but except GSH lack thiol-reductase pathways. CRITICAL ISSUES: What are the thiol-redox links between compartments? Mitochondria are totally independent, and insulated from the other compartments. The cytosol is also totally independent, but also provides reducing power to the ER and IMS, possibly by ways of reduced and oxidized GSH entering and exiting these compartments. FUTURE DIRECTIONS: Identifying the mechanisms regulating fluxes of GSH and oxidized glutathione between cytosol and ER, IMS, and possibly also peroxisomes, vacuole is needed to establish the proposed model of eukaryotic thiol-redox homeostasis, which should facilitate exploration of this system in mammals and plants.


Asunto(s)
Glutatión/metabolismo , Redes y Vías Metabólicas , Tiorredoxinas/metabolismo , Levaduras/metabolismo , Espacio Intracelular/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo
17.
Biochem J ; 446(1): 59-67, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22651090

RESUMEN

The intramolecular disulfide bond in hSOD1 [human SOD1 (Cu,Zn superoxide dismutase 1)] plays a key role in maintaining the protein's stability and quaternary structure. In mutant forms of SOD1 that cause familial ALS (amyotrophic lateral sclerosis), this disulfide bond is more susceptible to chemical reduction, which may lead to destabilization of the dimer and aggregation. During hSOD1 maturation, disulfide formation is catalysed by CCS1 (copper chaperone for SOD1). Previous studies in yeast demonstrate that the yeast GSH/Grx (glutaredoxin) redox system promotes reduction of the hSOD1 disulfide in the absence of CCS1. In the present study, we probe further the interaction between hSOD1, GSH and Grxs to provide mechanistic insight into the redox kinetics and thermodynamics of the hSOD1 disulfide. We demonstrate that hGrx1 (human Grx1) uses a monothiol mechanism to reduce the hSOD1 disulfide, and the GSH/hGrx1 system reduces ALS mutant SOD1 at a faster rate than WT (wild-type) hSOD1. However, redox potential measurements demonstrate that the thermodynamic stability of the disulfide is not consistently lower in ALS mutants compared with WT hSOD1. Furthermore, the presence of metal cofactors does not influence the disulfide redox potential. Overall, these studies suggest that differences in the GSH/hGrx1 reaction rate with WT compared with ALS mutant hSOD1 and not the inherent thermodynamic stability of the hSOD1 disulfide bond may contribute to the greater pathogenicity of ALS mutant hSOD1.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Glutarredoxinas/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Disulfuros/química , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Cinética , Mutación , Oxidación-Reducción , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Termodinámica
18.
Free Radic Biol Med ; 52(11-12): 2254-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22561702

RESUMEN

Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H2O2 bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Luminiscentes/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/fisiología , Compartimento Celular , ADN de Hongos/análisis , Colorantes Fluorescentes/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mutación/genética , Oxidación-Reducción , Transporte de Proteínas , Tiorredoxinas/metabolismo
19.
Biochemistry ; 51(22): 4377-89, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22583368

RESUMEN

Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.


Asunto(s)
Evolución Molecular , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Animales , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glutarredoxinas/química , Humanos , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
20.
Biochemistry ; 51(8): 1687-96, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22309771

RESUMEN

Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.


Asunto(s)
Proteínas Portadoras/química , Proteínas Hierro-Azufre/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Dicroismo Circular , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA