Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Adv Sci (Weinh) ; : e2400492, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569466

The cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation. The PANs-based molecular classifier facilitates signal amplification through the catalytic hairpin assembly. The interaction between PAN reporters and ncRNAs enables high-fidelity conversion of ncRNAs expression level into binding events, and the assessment of in situ ncRNAs levels via measurement of the fluorescent signal changes of PAN reporters. Compared to non-amplified methods, the detection limits of PANs are reduced by four orders of magnitude. Using human gastric cancer cell lines as a model system, the PANs-based molecular classifier demonstrates its capacity to measure multiple ncRNAs in living cells and assesses the degree of cell differentiation. This approach can serve as a universal strategy for the classification of cancer cells during malignant transformation and tumor progression.

2.
Anal Chem ; 2022 Dec 21.
Article En | MEDLINE | ID: mdl-36542541

Antisense peptide nucleic acid (asPNA), an effective antisense drug, has been employed as a gene therapy agent and a useful tool in molecular biology. Gaining control over the delivery of asPNA to target tissues has been a major hindrance to its wide application in clinical practice. A simple and efficient DNA nanoribbon (DNR)-based drug delivery process has been designed in this study that releases the asPNA agent to inhibit oncogenic microRNAs (miRNAs). Furthermore, we demonstrated how the AS1411 aptamer that binds nucleolin on the cell membranes works as a control mechanism capable of identifying target cancer cells and enhancing the enrichment capacity of DNR. With the biodegradability of DNR, we can efficiently initiate the release of asPNA into the cytoplasm, particularly targeting the intended miR-21 and synergistically increasing programmed cell death 4 (PDCD4) expression to enhance cell apoptosis. We assume that this well-defined delivery mechanism will aid in designing antisense site-specific treatments for various diseases, including cancer.

...