Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(46): eabk1210, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757781

RESUMEN

Artificial enzymes have attracted wide interest in disease diagnosis and biotechnology due to high stability, easy synthesis, and cost effectiveness. Unfortunately, their catalytic rate is limited to surface electron transfer, affecting the catalytic and biological activity. Here, we report an oligomeric nanozyme (O-NZ) with ultrafast electron transfer, achieving ultrahigh catalytic activity. O-NZ shows electron transfer of 1.8 nanoseconds in internal cores and 1.2 picoseconds between core and ligand molecule, leading to ultrahigh superoxidase dismutase­like and glutathione peroxidase­like activity (comparable with natural enzyme, Michaelis constant = 0.87 millimolars). Excitingly, O-NZ can improve the 1-month survival rate of mice with acute brain trauma from 50 to 90% and promote the recovery of long-term neurocognition. Biochemical experiments show that O-NZ can decrease harmful peroxide and superoxide via in vivo catalytic chain reaction and reduce acute neuroinflammation via nuclear factor erythroid-2 related factor 2­mediated up-regulation of heme oxygenase-1 expression.

2.
J Mater Chem B ; 8(11): 2321-2330, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32100792

RESUMEN

Free radical-induced oxidative damage and nitrosative stress have been identified as key factors in neuroinflammation responses after traumatic brain injury (TBI), with which reactive oxygen and nitrogen species (RONS), especially nitrogen signaling molecules, are strongly associated. Here, we prepared ultrasmall carbon dot (CD) by using a simple and facile method. In vitro assessment experiments show that the antioxidative CD exhibits an ultrahigh target-scavenging effect for nitrogen signaling molecules, especially the highly reactive ˙NO and ONOO-. However, CD can only partially eliminate conventional oxygen radials such as O2˙- and ˙OH, indicating CD has a preference for RNS modulation. Moreover, in vitro cell experiments and in vivo mice experiments reveal that CD can reduce the reactive oxygen species (ROS) level and lipid peroxidation, enhance superoxide dismutase (SOD) activity and GSSG level, and further improve the survival rate of neuron cells and TBI mice. These results declare that antioxidative CD could serve as an effective therapeutic for TBI.


Asunto(s)
Antioxidantes/química , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Carbono/química , Puntos Cuánticos/química , Especies de Nitrógeno Reactivo/química , Animales , Antioxidantes/farmacología , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Muerte Celular/efectos de los fármacos , Cisteína/química , Modelos Animales de Enfermedad , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Lisina/química , Ratones , Ratones Endogámicos C57BL , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Neuronas/citología , Estrés Oxidativo/efectos de los fármacos , Puntos Cuánticos/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Distribución Tisular
3.
ACS Nano ; 13(10): 11552-11560, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31553878

RESUMEN

Neurotrauma is one of the most serious traumatic injuries, which can induce an excess amount of reactive oxygen and nitrogen species (RONS) around the wound, triggering a series of biochemical responses and neuroinflammation. Traditional antioxidant-based bandages can effectively decrease infection via preventing oxidative stress, but its effectiveness is limited to a short period of time due to the rapid loss of electron-donating ability. Herein, we developed a nanozyme-based bandage using single-atom Pt/CeO2 with a persistent catalytic activity for noninvasive treatment of neurotrauma. Single-atom Pt induced the lattice expansion and preferred distribution on (111) facets of CeO2, enormously increasing the endogenous catalytic activity. Pt/CeO2 showed a 2-10 times higher scavenging activity against RONS as well as 3-10 times higher multienzyme activities compared to CeO2 clusters. The single-atom Pt/CeO2 retained the long-lasting catalytic activity for up to a month without obvious decay due to enhanced electron donation through the Mars-van Krevelen reaction. In vivo studies disclosed that the nanozyme-based bandage at the single-atom level can significantly improve the wound healing of neurotrauma and reduce neuroinflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Platino (Metal)/química , Animales , Antioxidantes/metabolismo , Catálisis , Supervivencia Celular/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Cerio/química , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Estrés Oxidativo/efectos de los fármacos , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos
4.
Nano Lett ; 19(7): 4527-4534, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244237

RESUMEN

Reactive oxygen and nitrogen species (RONS), especially reactive nitrogen species (RNS) are intermediate products during incidence of nervous system diseases, showing continuous damage for traumatic brain injury (TBI). Here, we developed a carbogenic nanozyme, which shows an antioxidant activity 12 times higher than ascorbic acid (AA) and behaves as multienzyme mimetics. Importantly, the nanozyme exhibits an ultrahigh scavenging efficiency (∼16 times higher than AA) toward highly active RNS, such as •NO and ONOO- as well as traditional reactive oxygen species (ROS) including O2•-, H2O2, and •OH. In vitro experiments show that neuron cells injured by H2O2 or lipopolysaccharide can be significantly recovered after carbogenic nanozyme treatment via scavenging all kinds of RONS. Moreover, the carbogenic nanozyme can serve as various enzyme mimetics and eliminate the harmful peroxide and glutathione disulfide from injured mice, demonstrating its potential as a therapeutic for acute TBI.


Asunto(s)
Materiales Biomiméticos , Lesiones Traumáticas del Encéfalo , Disulfuro de Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Nanoestructuras , Especies de Nitrógeno Reactivo/metabolismo , Enfermedad Aguda , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Nanoestructuras/química , Nanoestructuras/uso terapéutico
5.
ACS Nano ; 13(2): 1870-1884, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30753061

RESUMEN

Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.


Asunto(s)
Lesiones Encefálicas/metabolismo , Estructuras Metalorgánicas/metabolismo , Neuronas/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Lesiones Encefálicas/inducido químicamente , Teoría Funcional de la Densidad , Lipopolisacáridos , Estructuras Metalorgánicas/química , Ratones , Oxidación-Reducción , Tamaño de la Partícula , Especies de Nitrógeno Reactivo/aislamiento & purificación , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie
6.
Small ; 14(13): e1703736, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29424016

RESUMEN

Catalytic nanomaterials can be used extrinsically to combat diseases associated with a surplus of reactive oxygen species (ROS). Rational design of surface morphologies and appropriate doping can substantially improve the catalytic performances. In this work, a class of hollow polyvinyl pyrrolidone-protected PtPdRh nanocubes with enhanced catalytic activities for in vivo free radical scavenging is proposed. Compared with Pt and PtPd counterparts, ternary PtPdRh nanocubes show remarkable catalytic properties of decomposing H2 O2 via enhanced oxygen reduction reactions. Density functional theory calculation indicates that the bond of superoxide anions breaks for the energetically favorable status of oxygen atoms on the surface of PtPdRh. Viability of cells and survival rate of animal models under exposure of high-energy γ radiation are considerably enhanced by 94% and 50% respectively after treatment of PtPdRh nanocubes. The mechanistic investigations on superoxide dismutase (SOD) activity, malondialdehyde amount, and DNA damage repair demonstrate that hollow PtPdRh nanocubes act as catalase, peroxidase, and SOD analogs to efficiently scavenge ROS.


Asunto(s)
Nanoestructuras/química , Paladio/química , Platino (Metal)/química , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA