Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1086097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873878

RESUMEN

Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans, ultimately suppressing tumors, alleviating suffering, and prolonging lives of patients. A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods. These papers investigate diverse data representations, neural network architectures, learning methodologies, and evaluations schemes. However, deciphering promising predominant and emerging trends is difficult due to the variety of explored methods and lack of standardized framework for comparing drug response prediction models. To obtain a comprehensive landscape of deep learning methods, we conducted an extensive search and analysis of deep learning models that predict the response to single drug treatments. A total of 61 deep learning-based models have been curated, and summary plots were generated. Based on the analysis, observable patterns and prevalence of methods have been revealed. This review allows to better understand the current state of the field and identify major challenges and promising solution paths.

2.
Nucleic Acids Res ; 51(D1): D678-D689, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350631

RESUMEN

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.


Asunto(s)
Genómica , Programas Informáticos , Virus , Humanos , Bacterias/genética , Biología Computacional , Bases de Datos Genéticas , Gripe Humana , Virus/genética
3.
PLoS One ; 17(12): e0279280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36525447

RESUMEN

Plasmids are important genetic elements that facilitate horizonal gene transfer between bacteria and contribute to the spread of virulence and antimicrobial resistance. Most bacterial genome sequences in the public archives exist in draft form with many contigs, making it difficult to determine if a contig is of chromosomal or plasmid origin. Using a training set of contigs comprising 10,584 chromosomes and 10,654 plasmids from the PATRIC database, we evaluated several machine learning models including random forest, logistic regression, XGBoost, and a neural network for their ability to classify chromosomal and plasmid sequences using nucleotide k-mers as features. Based on the methods tested, a neural network model that used nucleotide 6-mers as features that was trained on randomly selected chromosomal and plasmid subsequences 5kb in length achieved the best performance, outperforming existing out-of-the-box methods, with an average accuracy of 89.38% ± 2.16% over a 10-fold cross validation. The model accuracy can be improved to 92.08% by using a voting strategy when classifying holdout sequences. In both plasmids and chromosomes, subsequences encoding functions involved in horizontal gene transfer-including hypothetical proteins, transporters, phage, mobile elements, and CRISPR elements-were most likely to be misclassified by the model. This study provides a straightforward approach for identifying plasmid-encoding sequences in short read assemblies without the need for sequence alignment-based tools.


Asunto(s)
Cromosomas Bacterianos , Genoma Bacteriano , Plásmidos/genética , Cromosomas Bacterianos/genética , Bacterias/genética , Aprendizaje Automático , Nucleótidos
4.
Nucleic Acids Res ; 48(D1): D606-D612, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31667520

RESUMEN

The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org). PATRIC supports bioinformatic analyses of all bacteria with a special emphasis on pathogens, offering a rich comparative analysis environment that provides users with access to over 250 000 uniformly annotated and publicly available genomes with curated metadata. PATRIC offers web-based visualization and comparative analysis tools, a private workspace in which users can analyze their own data in the context of the public collections, services that streamline complex bioinformatic workflows and command-line tools for bulk data analysis. Over the past several years, as genomic and other omics-related experiments have become more cost-effective and widespread, we have observed considerable growth in the usage of and demand for easy-to-use, publicly available bioinformatic tools and services. Here we report the recent updates to the PATRIC resource, including new web-based comparative analysis tools, eight new services and the release of a command-line interface to access, query and analyze data.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Algoritmos , Animales , Caenorhabditis elegans/genética , Pollos/genética , Drosophila melanogaster/genética , Interacciones Huésped-Patógeno/genética , Humanos , Internet , Macaca mulatta/genética , Metagenómica , Ratones , National Institute of Allergy and Infectious Diseases (U.S.) , Fenotipo , Filogenia , Ratas , Porcinos/genética , Estados Unidos , Pez Cebra/genética
5.
BMC Bioinformatics ; 20(1): 486, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581946

RESUMEN

BACKGROUND: Recent advances in high-volume sequencing technology and mining of genomes from metagenomic samples call for rapid and reliable genome quality evaluation. The current release of the PATRIC database contains over 220,000 genomes, and current metagenomic technology supports assemblies of many draft-quality genomes from a single sample, most of which will be novel. DESCRIPTION: We have added two quality assessment tools to the PATRIC annotation pipeline. EvalCon uses supervised machine learning to calculate an annotation consistency score. EvalG implements a variant of the CheckM algorithm to estimate contamination and completeness of an annotated genome.We report on the performance of these tools and the potential utility of the consistency score. Additionally, we provide contamination, completeness, and consistency measures for all genomes in PATRIC and in a recent set of metagenomic assemblies. CONCLUSION: EvalG and EvalCon facilitate the rapid quality control and exploration of PATRIC-annotated draft genomes.


Asunto(s)
Bases de Datos Genéticas , Genoma Arqueal , Genoma Bacteriano , Aprendizaje Automático , Metagenómica/métodos , Metagenómica/normas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...