Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Host Microbe ; 32(6): 925-944.e10, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38754417

RESUMEN

Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial ß-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.


Asunto(s)
Microbioma Gastrointestinal , Glucuronidasa , Homeostasis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Glucuronidasa/metabolismo , Ratones Endogámicos C57BL , Serotonina/metabolismo , Glucurónidos/metabolismo , Humanos , Intestinos/microbiología , Masculino , Vida Libre de Gérmenes
2.
J Am Chem Soc ; 146(1): 125-133, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38118176

RESUMEN

Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, ß-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a ß-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-ß-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-ß-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Glucuronidasa , Piperidinas , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Glucuronidasa/metabolismo , Glicósido Hidrolasas/metabolismo
3.
Chembiochem ; 24(21): e202300473, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37552008

RESUMEN

Activity-based protein profiling is a powerful chemoproteomic technique to detect active enzymes and identify targets and off-targets of drugs. Here, we report the use of carmofur- and activity-based probes to identify biologically relevant enzymes in the bacterial pathogen Staphylococcus aureus. Carmofur is an anti-neoplastic prodrug of 5-fluorouracil and also has antimicrobial and anti-biofilm activity. Carmofur probes were originally designed to target human acid ceramidase, a member of the NTN hydrolase family with an active-site cysteine nucleophile. Here, we first profiled the targets of a fluorescent carmofur probe in live S. aureus under biofilm-promoting conditions and in liquid culture, before proceeding to target identification by liquid chromatography/mass spectrometry. Treatment with a carmofur-biotin probe led to enrichment of 20 enzymes from diverse families awaiting further characterization, including the NTN hydrolase-related IMP cyclohydrolase PurH. However, the probe preferentially labeled serine hydrolases, thus displaying a reactivity profile similar to that of carbamates. Our results suggest that the electrophilic N-carbamoyl-5-fluorouracil scaffold could potentially be optimized to achieve selectivity towards diverse enzyme families. The observed promiscuous reactivity profile suggests that the clinical use of carmofur presumably leads to inactivation of a number human and microbial enzymes, which could lead to side effects and/or contribute to therapeutic efficacy.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Fluorouracilo/química , Fluorouracilo/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas
4.
Chem Sci ; 14(6): 1532-1542, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794180

RESUMEN

The reactivity of the acceptor alcohol can have a tremendous influence on the outcome of a glycosylation reaction, both in terms of yield and stereoselectivity. Through a systematic survey of 67 acceptor alcohols in glycosylation reactions with two glucosyl donors we here reveal how the reactivity of a carbohydrate acceptor depends on its configuration and substitution pattern. The study shows how the functional groups flanking the acceptor alcohol influence the reactivity of the alcohol and show that both the nature and relative orientation play an essential role. The empiric acceptor reactivity guidelines revealed here will aid in the rational optimization of glycosylation reactions and be an important tool in the assembly of oligosaccharides.

5.
Gut Microbes ; 14(1): 2107289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953888

RESUMEN

Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial ß-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.


Asunto(s)
Microbioma Gastrointestinal , Mononucleótido de Flavina , Microbioma Gastrointestinal/fisiología , Glucurónidos , Humanos , Inmunosupresores , Ácido Micofenólico/uso terapéutico , Proteómica
6.
FEBS Lett ; 596(18): 2400-2408, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796054

RESUMEN

Glycosphingolipids (GSLs) fulfil diverse functions in cells. Abnormalities in their metabolism are associated with specific pathologies and, consequently, the pharmacological modulation of GSLs is considered a therapeutic avenue. The accurate measurement of in situ metabolism of GSLs and the modulatory impact of drugs is warranted. Employing synthesised sphingosine and sphinganine containing 13 C atoms, we developed a method to monitor the de novo synthesis of glucosylceramide, the precursor of complex GSLs, by the enzyme glucosylceramide synthase (GCS). We show that feeding cells with isotope-labelled precursor combined with liquid chromatography-mass spectrometry (MS)/MS analysis allows accurate determination of the IC50 values of therapeutically considered inhibitors (iminosugars and ceramide mimics) of GCS in cultured cells. Acquired data were comparable to those obtained with an earlier method using artificial fluorescently labelled ceramide to feed cells.


Asunto(s)
Glucosilceramidas , Esfingosina , Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Espectrometría de Masas , Esfingosina/farmacología
7.
Nat Commun ; 13(1): 136, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013263

RESUMEN

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Carcinógenos/antagonistas & inhibidores , Colitis/prevención & control , Neoplasias Colorrectales/prevención & control , Glucuronidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Triclosán/antagonistas & inhibidores , Animales , Antiinfecciosos Locales/química , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/toxicidad , Anticarcinógenos/química , Anticarcinógenos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biotransformación , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Colitis/inducido químicamente , Colitis/enzimología , Colitis/microbiología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Glucuronidasa/química , Glucuronidasa/genética , Glucuronidasa/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosán/química , Triclosán/metabolismo , Triclosán/toxicidad
8.
Chem Sci ; 12(41): 13909-13913, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34760177

RESUMEN

Gaucher's disease, the most prevalent lysosomal storage disorder, is caused by missense mutation of the GBA gene, ultimately resulting in deficient GCase activity, hence the excessive build-up of cellular glucosylceramide. Among different therapeutic strategies, pharmacological chaperoning of mutant GCase represents an attractive approach that relies on small organic molecules acting as protein stabilizers. Herein, we expand upon a new class of transient GCase inactivators based on a reactive 2-deoxy-2-fluoro-ß-d-glucoside tethered to an array of lipid-mimicking phosphorus-based aglycones, which not only improve the selectivity and inactivation efficiency, but also the stability of these compounds in aqueous media. This hypothesis was further validated with kinetic and cellular studies confirming restoration of catalytic activity in Gaucher cells after treatment with these pharmacological chaperones.

9.
Biomolecules ; 11(2)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673160

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. Among the therapeutic possibilities are intravenous administered enzyme replacement therapy (ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.


Asunto(s)
Enfermedad de Fabry , Animales , Inhibidores Enzimáticos/farmacología , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/genética , Enfermedad de Fabry/fisiopatología , Femenino , Humanos , Masculino , Sondas Moleculares/metabolismo , Mutación , alfa-Galactosidasa/antagonistas & inhibidores , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
10.
Chembiochem ; 22(10): 1743-1749, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33534182

RESUMEN

Glycoside hydrolases (GHs) are attractive tools for multiple biotechnological applications. In conjunction with their hydrolytic function, GHs can perform transglycosylation under specific conditions. In nature, oligosaccharide synthesis is performed by glycosyltransferases (GTs); however, the industrial use of GTs is limited by their instability in solution. A key difference between GTs and GHs is the flexibility of their binding site architecture. We have used the xylanase from Bacillus circulans (BCX) to study the interplay between active-site flexibility and transglycosylation. Residues of the BCX "thumb" were substituted to increase the flexibility of the enzyme binding site. Replacement of the highly conserved residue P116 with glycine shifted the balance of the BCX enzymatic reaction toward transglycosylation. The effects of this point mutation on the structure and dynamics of BCX were investigated by NMR spectroscopy. The P116G mutation induces subtle changes in the configuration of the thumb and enhances the millisecond dynamics of the active site. Based on our findings, we propose the remodelling of the GH enzymes glycon site flexibility as a strategy to improve the transglycosylation efficiency of these biotechnologically important catalysts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Glicosilación , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Temperatura de Transición
12.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33271119

RESUMEN

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Linfocitos T CD8-positivos/inmunología , Glioma/inmunología , Glicoesfingolípidos/metabolismo , Glicosiltransferasas/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Presentación de Antígeno , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/mortalidad , Glicoesfingolípidos/inmunología , Antígenos HLA/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos , Transducción de Señal , Análisis de Supervivencia , Escape del Tumor
14.
Nat Commun ; 11(1): 4434, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895393

RESUMEN

Neisseria meningitidis serogroup A capsular polysaccharide (MenA CPS) consists of (1 → 6)-2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate repeating units, O-acetylated at position C3 or C4. Glycomimetics appear attractive to overcome the CPS intrinsic lability in physiological media, due to cleavage of the phosphodiester bridge, and to develop a stable vaccine with longer shelf life in liquid formulation. Here, we generate a series of non-acetylated carbaMenA oligomers which are proven more stable than the CPS. An octamer (DP8) inhibits the binding of a MenA specific bactericidal mAb and polyclonal serum to the CPS, and is selected for further in vivo testing. However, its CRM197 conjugate raises murine antibodies towards the non-acetylated CPS backbone, but not the natural acetylated form. Accordingly, random O-acetylation of the DP8 is performed, resulting in a structure (Ac-carbaMenA) showing improved inhibition of anti-MenA CPS antibody binding and, after conjugation to CRM197, eliciting anti-MenA protective murine antibodies, comparably to the vaccine benchmark.


Asunto(s)
Glicoconjugados/síntesis química , Neisseria meningitidis Serogrupo A/inmunología , Polisacáridos Bacterianos/síntesis química , Vacunas Conjugadas , Animales , Anticuerpos Antibacterianos/análisis , Anticuerpos Neutralizantes/química , Cápsulas Bacterianas/inmunología , Biomimética/métodos , Glicoconjugados/inmunología , Ratones , Neisseria meningitidis Serogrupo A/química , Neisseria meningitidis Serogrupo A/efectos de los fármacos , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/inmunología , Vacunas Conjugadas/química , Vacunas Conjugadas/microbiología
15.
Proc Natl Acad Sci U S A ; 117(26): 15182-15192, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554494

RESUMEN

The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.


Asunto(s)
Antineoplásicos/efectos adversos , Cromatina/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/efectos adversos , Animales , Línea Celular , Doxorrubicina/análogos & derivados , Doxorrubicina/síntesis química , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Cardiopatías/inducido químicamente , Histonas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones
16.
Angew Chem Int Ed Engl ; 59(46): 20508-20514, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32533782

RESUMEN

The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Hidrólisis , Cinética , Ligandos , Modelos Moleculares , Unión Proteica
17.
Nat Commun ; 11(1): 2664, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471982

RESUMEN

Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconjugates to fuel biological research.


Asunto(s)
Química Computacional/métodos , Dioxoles/química , Oligosacáridos/síntesis química , Compuestos de Selenio/química , Conformación de Carbohidratos , Galactosa/química , Glucosa/química , Glicosilación , Manosa/química , Espectrofotometría Infrarroja
18.
Org Biomol Chem ; 18(15): 2834-2837, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32236232

RESUMEN

2,4-Diamino-2,4,6-trideoxyglucose (bacillosamine) is a monosaccharide found in many pathogenic bacteria, variation in the functionalities appended to the amino groups occurs depending on the species the sugar is derived from. We here report the first synthesis of bacillosamine synthons that allow for the incorporation of two different functionalities at the C-2-N-acetyl and C-4-amines. We have developed chemistry to assemble a set of conjugation ready Neisseria meningitidis C-2-N-acetyl bacillosamine saccharides, carrying either an acetyl or (R)- or (S)-glyceroyl at the C-4 amine. The glyceroyl bacillosamines have been further extended at the C-3-OH with an α-d-galactopyranose to provide structures that occur as post-translational modifications of N. meningitidis PilE proteins, which make up the bacterial pili.


Asunto(s)
Hexosaminas/síntesis química , Neisseria meningitidis/química , Hexosaminas/química , Estructura Molecular
19.
Org Biomol Chem ; 18(11): 2038-2050, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32141465

RESUMEN

The stereoselective construction of 1,2-cis-glycosidic linkages is key in the assembly of biologically relevant glycans, but remains a synthetic challenge. Reagent-controlled glycosylation methodologies, in which external nucleophiles are employed to modulate the reactivity of the glycosylation system, have become powerful means for the construction of 1,2-cis-glycosidic linkages. Here we establish that nucleophilic additives can support the construction of α-1,2-glucans, and apply our findings in the construction of a d-alanine kojibiose functionalized glycerol phosphate teichoic acid fragment. This latter molecule can be found in the cell wall of the opportunistic Gram-positive bacterium, Enterococcus faecalis and represents a structural element that can possibly be used in the development of therapeutic vaccines and diagnostic tools.


Asunto(s)
Glucanos/síntesis química , Ácidos Teicoicos/química , Alanina , Pared Celular/química , Disacáridos , Enterococcus faecalis/ultraestructura , Glucanos/química , Glicosilación , Indicadores y Reactivos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...