Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 8: 180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28420994

RESUMEN

Many drug discovery projects rely on commercial compounds to discover active leads. However, current commercial libraries, with mostly synthetic compounds, access a small fraction of the possible chemical diversity. Natural products, in contrast, possess a vast structural diversity and have proven to be an outstanding source of new drugs. Several chemoinformatic analyses of natural products have demonstrated their diversity and structural complexity. However, to our knowledge, the scaffold content and structural diversity of fungal secondary metabolites have never been studied. Herein, the scaffold diversity of 223 fungal metabolites was measured and compared to the diversity of approved drugs and commercial libraries for HTS containing natural, synthetic, and semi-synthetic compounds. In addition, the global diversity of the fungal isolates was assessed and compared to other reference data sets using Consensus Diversity Plots, a chemoinformatic tool recently developed. It was concluded that fungal secondary metabolites are cyclic systems with few ramifications and more diverse than the commercial libraries with natural products and semi-synthetic compounds. The fungal metabolites data set was one of the most structurally diverse, containing a large proportion of different and unique scaffolds not found in the other compound data sets including ChEMBL. Therefore, fungal metabolites offer a rich source of molecules suited for identifying diverse candidates for drug discovery.

2.
J Cheminform ; 8: 63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895718

RESUMEN

BACKGROUND: Measuring the structural diversity of compound databases is relevant in drug discovery and many other areas of chemistry. Since molecular diversity depends on molecular representation, comprehensive chemoinformatic analysis of the diversity of libraries uses multiple criteria. For instance, the diversity of the molecular libraries is typically evaluated employing molecular scaffolds, structural fingerprints, and physicochemical properties. However, the assessment with each criterion is analyzed independently and it is not straightforward to provide an evaluation of the "global diversity". RESULTS: Herein the Consensus Diversity Plot (CDP) is proposed as a novel method to represent in low dimensions the diversity of chemical libraries considering simultaneously multiple molecular representations. We illustrate the application of CDPs to classify eight compound data sets and two subsets with different sizes and compositions using molecular scaffolds, structural fingerprints, and physicochemical properties. CONCLUSIONS: CDPs are general data mining tools that represent in two-dimensions the global diversity of compound data sets using multiple metrics. These plots can be constructed using single or combined measures of diversity. An online version of the CDPs is freely available at: https://consensusdiversityplots-difacquim-unam.shinyapps.io/RscriptsCDPlots/.Graphical AbstractConsensus Diversity Plot is a novel data mining tool that represents in two-dimensions the global diversity of compound data sets using multiple metrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA