Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
NAR Genom Bioinform ; 5(2): lqad041, 2023 Jun.
Article En | MEDLINE | ID: mdl-37138579

Intrinsically disordered proteins (IDPs) are important for a broad range of biological functions and are involved in many diseases. An understanding of intrinsic disorder is key to develop compounds that target IDPs. Experimental characterization of IDPs is hindered by the very fact that they are highly dynamic. Computational methods that predict disorder from the amino acid sequence have been proposed. Here, we present ADOPT (Attention DisOrder PredicTor), a new predictor of protein disorder. ADOPT is composed of a self-supervised encoder and a supervised disorder predictor. The former is based on a deep bidirectional transformer, which extracts dense residue-level representations from Facebook's Evolutionary Scale Modeling library. The latter uses a database of nuclear magnetic resonance chemical shifts, constructed to ensure balanced amounts of disordered and ordered residues, as a training and a test dataset for protein disorder. ADOPT predicts whether a protein or a specific region is disordered with better performance than the best existing predictors and faster than most other proposed methods (a few seconds per sequence). We identify the features that are relevant for the prediction performance and show that good performance can already be gained with <100 features. ADOPT is available as a stand-alone package at https://github.com/PeptoneLtd/ADOPT and as a web server at https://adopt.peptone.io/.

4.
Nat Microbiol ; 4(2): 339-351, 2019 02.
Article En | MEDLINE | ID: mdl-30510168

Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN.


Activins/pharmacology , Antiviral Agents/pharmacology , Bone Morphogenetic Protein 6/pharmacology , Gene Expression Regulation/drug effects , Signal Transduction/drug effects , Antiviral Agents/metabolism , Cells, Cultured , Endopeptidases/genetics , Hepacivirus/drug effects , Hepatitis C/drug therapy , Hepatitis C/metabolism , Hepcidins/genetics , Humans , Interferon Regulatory Factors/genetics , Interferon-alpha/pharmacology , Interferon-alpha/therapeutic use , RNA, Viral/metabolism , Signal Transduction/genetics , Smad1 Protein/genetics , Ubiquitin Thiolesterase , Virus Replication/drug effects , Zika Virus/drug effects
5.
Scand J Immunol ; 88(3): e12694, 2018 Sep.
Article En | MEDLINE | ID: mdl-29926972

The field of stromal immunology has risen to prominence in the last decade, fuelled by accumulating evidence that nonhaematopoietic mesenchymal cells are not simply involved in modulating tissue structure, but actively contribute to immune processes. In addition to regulating tissue integrity during homoeostasis, stromal cells are sensitive sensors of inflammatory stimuli produced downstream of tissue injury or infection, and respond by producing a wide variety of chemokines, cytokines and adhesion factors that contribute to immunity and tissue repair. When not appropriately regulated, these same processes can result in inflammatory pathology and organ dysfunction. In this review, we provide a brief overview of stromal immunology, followed by a comprehensive discussion of how the IL-6 family cytokine oncostatin M (OSM) coordinates stromal cell activity in diverse physiological and pathological contexts. We conclude by providing a perspective on the potential clinical value of the OSM-stromal cell axis and how this pathway might be exploited therapeutically.


Inflammation/immunology , Mesenchymal Stem Cells/physiology , Oncostatin M/metabolism , Stromal Cells/physiology , Animals , Homeostasis , Humans , Interleukin-6/metabolism
6.
Gastroenterology ; 153(5): 1320-1337.e16, 2017 11.
Article En | MEDLINE | ID: mdl-28782508

BACKGROUND & AIMS: Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. METHODS: We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4+ T cells. We sequenced T-cell receptor Vß genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+ T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. RESULTS: Circulating and gut-resident CD4+ T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4+ T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vß repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+ T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. CONCLUSIONS: In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+ T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens.


Bacteria/immunology , CD4-Positive T-Lymphocytes/immunology , Colitis, Ulcerative/immunology , Crohn Disease/immunology , Gastrointestinal Microbiome/immunology , Intestines/immunology , Bacteria/classification , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/microbiology , Case-Control Studies , Cell Line , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Crohn Disease/blood , Crohn Disease/diagnosis , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Immunologic Memory , Interleukin-17/immunology , Intestines/microbiology , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/immunology , Th17 Cells/immunology , Th17 Cells/microbiology
8.
Nat Med ; 23(5): 579-589, 2017 May.
Article En | MEDLINE | ID: mdl-28368383

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.


Inflammatory Bowel Diseases/genetics , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M/genetics , Adult , Aged , Animals , Antibodies, Monoclonal/therapeutic use , Case-Control Studies , Chemokines , Colitis/genetics , Colitis/immunology , Disease Models, Animal , Female , Flow Cytometry , Gastrointestinal Agents/therapeutic use , Gene Expression Profiling , Humans , Immunoblotting , Immunohistochemistry , Inflammation , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Infliximab/therapeutic use , Intercellular Adhesion Molecule-1/immunology , Interleukin-6/immunology , Male , Mice , Mice, Knockout , Middle Aged , Oncostatin M/immunology , Oncostatin M/metabolism , Oncostatin M Receptor beta Subunit/immunology , Oncostatin M Receptor beta Subunit/metabolism , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Young Adult
9.
PLoS One ; 11(9): e0163604, 2016.
Article En | MEDLINE | ID: mdl-27658046

Recent thymic emigrants (RTEs) represent a source of antigen-naïve T cells that enter the periphery throughout life. However, whether RTEs contribute to the control of chronic parasitic infection and how their potential might be harnessed by therapeutic intervention is currently unclear. Here, we show that CD4+ recent thymic emigrants emerging into the periphery of mice with ongoing Leishmania donovani infection undergo partial activation and are recruited to sites of granulomatous inflammation. However, CD4+ RTEs displayed severely restricted differentiation either into IFNγ+ or IFNγ+TNFα+ effectors, or into IL-10-producing regulatory T cells. Effector cell differentiation in the chronically infected host was not promoted by adoptive transfer of activated dendritic cells or by allowing extended periods of post-thymic differentiation in the periphery. Nevertheless, CD4+ RTEs from infected mice retained the capacity to transfer protection into lymphopenic RAG2-/- mice. Taken together, our data indicate that RTEs emerging into a chronically inflamed environment are not recruited into the effector pool, but retain the capacity for subsequent differentiation into host protective T cells when placed in a disease-free environment.

11.
Front Immunol ; 6: 319, 2015.
Article En | MEDLINE | ID: mdl-26150817

Stromal cells of multiple tissues contribute to immune-mediated protective responses and, conversely, the pathological tissue changes associated with chronic inflammatory disease. However, unlike hematopoietic immune cells, tissue stromal cell populations remain poorly characterized with respect to specific surface marker expression, their ontogeny, self-renewal, and proliferative capacity within tissues and the extent to which they undergo phenotypic immunological changes during the course of an infectious or inflammatory insult. Extending our knowledge of the immunological features of stromal cells provides an exciting opportunity to further dissect the underlying biology of many important immune-mediated diseases, although several challenges remain in bringing the emerging field of stromal immunology to equivalence with the study of the hematopoietic immune cell compartment. This review highlights recent studies that have begun unraveling the complexity of tissue stromal cell function in immune responses, with a focus on the intestine, and proposes strategies for the development of the field to uncover the great potential for stromal immunology to contribute to our understanding of the fundamental pathophysiology of disease, and the opening of new therapeutic avenues in multiple chronic inflammatory conditions.

12.
Nature ; 513(7519): 564-568, 2014 Sep 25.
Article En | MEDLINE | ID: mdl-25043027

FOXP3(+) regulatory T cells (Treg cells) are abundant in the intestine, where they prevent dysregulated inflammatory responses to self and environmental stimuli. It is now appreciated that Treg cells acquire tissue-specific adaptations that facilitate their survival and function; however, key host factors controlling the Treg response in the intestine are poorly understood. The interleukin (IL)-1 family member IL-33 is constitutively expressed in epithelial cells at barrier sites, where it functions as an endogenous danger signal, or alarmin, in response to tissue damage. Recent studies in humans have described high levels of IL-33 in inflamed lesions of inflammatory bowel disease patients, suggesting a role for this cytokine in disease pathogenesis. In the intestine, both protective and pathological roles for IL-33 have been described in murine models of acute colitis, but its contribution to chronic inflammation remains ill defined. Here we show in mice that the IL-33 receptor ST2 is preferentially expressed on colonic Treg cells, where it promotes Treg function and adaptation to the inflammatory environment. IL-33 signalling in T cells stimulates Treg responses in several ways. First, it enhances transforming growth factor (TGF)-ß1-mediated differentiation of Treg cells and, second, it provides a necessary signal for Treg-cell accumulation and maintenance in inflamed tissues. Strikingly, IL-23, a key pro-inflammatory cytokine in the pathogenesis of inflammatory bowel disease, restrained Treg responses through inhibition of IL-33 responsiveness. These results demonstrate a hitherto unrecognized link between an endogenous mediator of tissue damage and a major anti-inflammatory pathway, and suggest that the balance between IL-33 and IL-23 may be a key controller of intestinal immune responses.


Interleukins/immunology , Intestines/cytology , Intestines/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Colitis/immunology , Colitis/pathology , Colon/cytology , Colon/immunology , Colon/pathology , Disease Models, Animal , Female , Immunity, Mucosal , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Interleukin-23/immunology , Interleukin-33 , Interleukins/antagonists & inhibitors , Interleukins/metabolism , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Interleukin/metabolism , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Transforming Growth Factor beta/metabolism
13.
Front Immunol ; 4: 307, 2013.
Article En | MEDLINE | ID: mdl-24137162

Immune responses at the intestinal mucosa must allow for host protection whilst simultaneously avoiding inappropriate inflammation. Although much work has focused on the innate immune functionality of hematopoietic immune cells, non-hematopoietic cell populations - including epithelial and stromal cells - are now recognized as playing a key role in innate defense at this site. In this study we examined the innate immune capacity of primary human intestinal stromal cells (iSCs). CD90(+) iSCs isolated from human colonic mucosa expressed a wide array of innate immune receptors and functionally responded to stimulation with bacterial ligands. iSCs also sensed infection with live Salmonella typhimurium, rapidly expressing IL-1 family cytokines via a RIPK2/p38MAPK-dependent signaling process. In addition to responding to innate immune triggers, primary iSCs exhibited a capacity for bacterial uptake, phagocytosis, and antigen processing, although to a lesser extent than professional APCs. Thus CD90(+) iSCs represent an abundant population of "non-professional" innate immune effector cells of the human colonic mucosa and likely play an important adjunctive role in host defense and immune regulation at this site.

14.
Immunity ; 39(3): 521-36, 2013 Sep 19.
Article En | MEDLINE | ID: mdl-24054330

NOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators. In particular, miR-29 downregulated interleukin-23 (IL-23) by targeting IL-12p40 directly and IL-23p19 indirectly, likely via reduction of ATF2. DSS-induced colitis was worse in miR-29-deficient mice and was associated with elevated IL-23 and T helper 17 signature cytokines in the intestinal mucosa. Crohn's disease (CD) patient DCs expressing NOD2 polymorphisms failed to induce miR-29 upon pattern recognition receptor stimulation and showed enhanced release of IL-12p40 on exposure to adherent invasive E. coli. Therefore, we suggest that loss of miR-29-mediated immunoregulation in CD DCs might contribute to elevated IL-23 in this disease.


Crohn Disease/immunology , Dendritic Cells/immunology , Interleukin-23/metabolism , MicroRNAs/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Activating Transcription Factor 2/metabolism , Animals , Cells, Cultured , Dendritic Cells/metabolism , Escherichia coli/immunology , Escherichia coli Infections/immunology , Humans , Inflammation/immunology , Interleukin-12 Subunit p40/metabolism , Intestinal Mucosa/immunology , Mice , Mice, Knockout , MicroRNAs/genetics , Nod2 Signaling Adaptor Protein/genetics , Polymorphism, Single Nucleotide , Th17 Cells/immunology
15.
Immunology ; 140(1): 12-21, 2013 Sep.
Article En | MEDLINE | ID: mdl-23621403

Secondary lymphoid organs function to increase the efficiency of interactions between rare, antigen-specific lymphocytes and antigen presenting cells, concentrating antigen and lymphocytes in a supportive environment that facilitates the initiation of an adaptive immune response. Homeostatic lymphoid tissue organogenesis proceeds via exquisitely controlled spatiotemporal interactions between haematopoietic lymphoid tissue inducer populations and multiple subsets of non-haematopoietic stromal cells. However, it is becoming clear that in a range of inflammatory contexts, ectopic or tertiary lymphoid tissues can develop inappropriately under pathological stress. Here we summarize the role of stromal cells in the development of homeostatic lymphoid tissue, and assess emerging evidence that suggests a critical role for stromal involvement in the tertiary lymphoid tissue development associated with chronic infections and inflammation.


Inflammation/immunology , Inflammation/pathology , Lymphoid Tissue/growth & development , Lymphoid Tissue/immunology , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Homeostasis/immunology , Humans , Lymphoid Tissue/cytology , Models, Immunological , Organogenesis/immunology , Stromal Cells/cytology , Stromal Cells/immunology
16.
PLoS Pathog ; 8(7): e1002827, 2012.
Article En | MEDLINE | ID: mdl-22911108

IL-10 is a critical regulatory cytokine involved in the pathogenesis of visceral leishmaniasis caused by Leishmania donovani and clinical and experimental data indicate that disease progression is associated with expanded numbers of CD4⁺ IFNγ⁺ T cells committed to IL-10 production. Here, combining conditional cell-specific depletion with adoptive transfer, we demonstrate that only conventional CD11c(hi) DCs that produce both IL-10 and IL-27 are capable of inducing IL-10-producing Th1 cells in vivo. In contrast, CD11c(hi) as well as CD11c(int/lo) cells isolated from infected mice were capable of reversing the host protective effect of diphtheria toxin-mediated CD11c⁺ cell depletion. This was reflected by increased splenomegaly, inhibition of NO production and increased parasite burden. Thus during chronic infection, multiple CD11c⁺ cell populations can actively suppress host resistance and enhance immunopathology, through mechanisms that do not necessarily involve IL-10-producing Th1 cells.


CD11c Antigen/analysis , Interleukin-10/biosynthesis , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/immunology , Th1 Cells/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diphtheria Toxin , Disease Progression , Interleukin-17/biosynthesis , Mice , Mice, Inbred C57BL , Spleen/parasitology
17.
Front Immunol ; 3: 262, 2012.
Article En | MEDLINE | ID: mdl-22934098

Dendritic cells (DCs) are specialized antigen presenting cells of bone marrow origin that can exist in tissues in either an immature or mature state. DCs have a myriad of roles in immunity and tolerance induction, but are perhaps best known for their role in the activation and differentiation of naïve T cells at the onset of an acquired immune response. Over the past decade, a body of literature has developed that suggests that DCs, as well as many other myeloid cell populations, are also capable of exerting "regulatory" effects on T cell responses. However, relatively little is known regarding the mechanisms by which such regulatory myeloid cells arise in vivo. In this mini-review, we first define the characteristics of "regulatory" DCs (rDCs) and then focus on the contribution of non-hematopoietic stromal cells to their generation within specific tissue microenvironments. We also highlight areas of research that warrant future attention, arguing for a focusing of efforts toward a better understanding of the features of stromal cell populations that enable the induction of rDCs. Finally, we discuss how an understanding of stromal cell-myeloid cell interactions may lead to new therapeutic strategies for cancer, autoimmunity, and infectious disease.

18.
PLoS One ; 7(7): e41050, 2012.
Article En | MEDLINE | ID: mdl-22815909

Members of the Interferon Regulatory Factor (IRF) family of transcription factors play an essential role in the development and function of the immune system. Here we investigated the role of IRF7 in the functional activation of conventional CD11c(hi) splenic dendritic cells (cDCs) in vitro and in vivo. Using mice deficient in IRF7, we found that this transcription factor was dispensable for the in vivo development of cDC subsets in the spleen. However, IRF7-deficient cDCs showed enhanced activation in response to microbial stimuli, characterised by exaggerated expression of CD80, CD86 and MHCII upon TLR2 ligation in vitro. The hyper-responsiveness of Irf7(-/-) cDC to TLR ligation could not be reversed with exogenous IFNα, nor by co-culture with wild-type cDCs, suggesting an intrinsic defect due to IRF7-deficiency. Irf7(-/-) cDCs also had impaired capacity to produce IL-12p70 when stimulated ex vivo, instead producing elevated levels of IL-10 that impaired their capacity to drive Th1 responses. Finally, analysis of bone marrow microchimeric mice revealed that cDCs deficient in IRF7 were also hyper-responsive to TLR2-mediated activation in vivo. Our data suggest a previously unknown function for IRF7 as a component of the regulatory network associated with cDC activation and adds to the wide variety of situations in which these transcription factors play a role.


CD11c Antigen/metabolism , Dendritic Cells/cytology , Interferon Regulatory Factor-7/metabolism , Spleen/metabolism , Toll-Like Receptor 2/metabolism , Animals , B7-1 Antigen/biosynthesis , B7-2 Antigen/biosynthesis , Coculture Techniques , Histocompatibility Antigens Class II/metabolism , Immune System , Mice , Mice, Inbred C57BL , Phenotype
19.
PLoS One ; 7(3): e34143, 2012.
Article En | MEDLINE | ID: mdl-22479545

Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgM(lo)mIgD(+) mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site.


B-Lymphocytes/cytology , Granuloma/parasitology , Leishmaniasis, Visceral/metabolism , Liver/parasitology , T-Lymphocytes/cytology , Adoptive Transfer , Animals , Antigens, CD1d/biosynthesis , CD5 Antigens/biosynthesis , Disease Models, Animal , Female , Granuloma/pathology , Interleukin-10/biosynthesis , Leishmania donovani/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
20.
Infect Immun ; 79(3): 1057-66, 2011 Mar.
Article En | MEDLINE | ID: mdl-21149596

Optimal hepatic resistance to Leishmania donovani in mice requires the coordinated effort of a variety of leukocyte populations that together induce activation of local macrophages to a leishmanicidal state. Although nitric oxide and reactive oxygen intermediates are potent leishmanicidal effector molecules operating in the acquired phase of immunity, there have long been suggestions that other mechanisms of leishmanicidal activity exist. We recently discovered that Irf-7 regulates a novel innate leishmanicidal response in resident splenic macrophages that line the marginal zone. Here, we tested whether this mechanism also operates in Kupffer cells, the resident macrophage population of the liver and the major target for hepatic infection by L. donovani. Comparing the Kupffer cell responses in situ in B6 and B6.Irf-7(-/-) mice, we found no evidence that Irf-7 affected amastigote uptake or early survival. However, we did find that Irf-7-deficient mice had impaired acquired resistance to hepatic L. donovani infection. This phenotype was attributable to a reduction in the capacity of hepatic CD4(+) T cells, NK cells, and NKT cells to produce gamma interferon (IFN-γ) and also to defective induction of NOS2 in infected Kupffer cells. Our data therefore add interferon regulatory factor 7 (IRF-7) to the growing list of interferon regulatory factors that have effects on downstream events in the acquired cellular immune response to nonviral pathogens.


Interferon Regulatory Factor-7/immunology , Kupffer Cells/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Liver/immunology , Animals , Cell Separation , Flow Cytometry , Interferon Regulatory Factor-7/metabolism , Kupffer Cells/metabolism , Leishmania donovani/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction
...