Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731401

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Azadirachta , Dihydroorotate Dehydrogenase , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors , Schistosomiasis , Azadirachta/chemistry , Animals , Schistosomiasis/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Molecular Dynamics Simulation , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Praziquantel/pharmacology , Praziquantel/chemistry , Praziquantel/therapeutic use
2.
Biochem Biophys Rep ; 38: 101735, 2024 Jul.
Article En | MEDLINE | ID: mdl-38799115

Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.

3.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38648537

O. gratissimum is one of the most common medicinal plants in every community in Nigeria. This plant has been presumed to be useful in the management of diseases including breast cancer, which is one the commonest cancers affecting women globally. Hence, this study aimed to computationally investigate the phytochemicals present in O. gratissimum by elucidate their binding dynamics against five selected molecular targets of breast cancer and predict their pharmacokinetics properties. Molecular docking, MMGBSA calculation and ADMET prediction were used. The results showed that isovitexin has the highest binding affinity of -9.11 kcal/mol and -9.80 kcal/mol for Human Epidermal Growth Factor Receptor 2 (HER2) and Epidermal Growth Factor Receptor (EGFR) respectively. Rosmarinic acid has the highest binding affinity of -12.15 kcal/mol for Phosphatidylinositol 3-kinase (PI3K), Nepetoidin A has the highest binding affinity of -9.14 kcal/mol for oestrogen receptor (ER), and Vitexin has the highest binding affinity of -12.90 kcal/mol for Progesterone receptor (PR). MMGBSA provided total binding energy that confirmed the stability of the complexes under physiological conditions. The ADMET profiles showed that O. gratissimum top phytochemicals identified would be safe for oral administration with no hepatoxicity. Overall, this study identified isovitexin, vitexin, rosmarinic acid, nepetoidin A and luteolin among others, as compounds that exhibit strong anti-cancer properties against breast cancer cells.

4.
BMC Complement Med Ther ; 24(1): 134, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38539199

BACKGROUND: Recent reports have highlighted the significance of plant bioactive components in drug development targeting neurodegenerative disorders such as Alzheimer's disease (AD). Thus, the current study assessed antioxidant activity and enzyme inhibitory activity of the aqueous extract of Talinum triangulare leave (AETt) as well as molecular docking/simulation of the identified phytonutrients against human cholinesterase activities. METHODS: In vitro assays were carried out to assess the 2,2- azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) cation radicals and cholinesterase inhibitory activities of AETt using standard protocols. High performance liquid chromatography coupled with diode-array detection (HPLC-DAD) was employed to identify compounds in AETt. Also, for computational analysis, identified bioactive compounds from AETt were docked using Schrodinger's GLIDE against human cholinesterase obtained from the protein data bank ( https://www.rcsb.org/ ). RESULTS: The results revealed that AETt exhibited a significant concentration-dependent inhibition against ABTS cation radicals (IC50 = 308.26 ± 4.36 µg/ml) with butylated hydroxytoluene (BHT) as the reference. Similarly, AETt demonstrated a significant inhibition against acetylcholinesterase (AChE, IC50 = 326.49 ± 2.01 µg/ml) and butyrylcholinesterase (BChE, IC50 = 219.86 ± 4.13 µg/ml) activities with galanthamine as the control. Molecular docking and simulation analyses revealed rutin and quercetin as potential hits from AETt, having showed strong binding energies for both the AChE and BChE. In addition, these findings were substantiated by analyses, including radius of gyration, root mean square fluctuation, root mean square deviation, as well as mode similarity and principal component analyses. CONCLUSION: Overall, this study offers valuable insights into the interactions and dynamics of protein-ligand complexes, offering a basis for further drug development targeting these proteins in AD.


Alzheimer Disease , Benzothiazoles , Cholinesterase Inhibitors , Sulfonic Acids , Tetrahydronaphthalenes , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Plant Extracts/chemistry , Alzheimer Disease/drug therapy , Cations
5.
Mol Biol Rep ; 49(9): 8391-8400, 2022 Sep.
Article En | MEDLINE | ID: mdl-35759083

BACKGROUND: This study assessed the hepatoprotective potential of flavonoid-rich extracts from Gongronema latifolium Benth on diabetes-induced type 2 rats via Fetuin-A and tumor necrosis factor-alpha (TnF-α). METHODS: In a standard procedure, the flavonoid-rich extract was prepared. For experimental rats, streptozotocin was injected intraperitoneally (45 mg/kg body weight) to induce diabetes mellitus. Following this, rats were given 5% of glucose water for 24 h. Hence, the animals were randomly divided into five groups of ten rats each, consisting of non-diabetic rats, diabetic controls, diabetic rats treated with low and high doses of flavonoid rich-extracts from Gongronema latifolium leaf (FREGL) (13 and 26 mg/kg, respectively), and diabetic rats treated with 200 mg/kg of metformin glibenclamide orally for 3 weeks. Afterwards, the animals were sacrificed, blood and liver were harvested to evaluate different biochemical parameters, hepatic gene expressions and histological examinations. RESULTS: The results revealed that FREGL (especially at the low dose) significantly (p < 0.05) reduced alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphate (ALP) activities, lipid peroxidation level, as well as relative gene expressions of fetuin-A and TNF-α in diabetic rats. Furthermore, diabetic rats given various doses of FREGL showed an increase in antioxidant enzymes and hexokinase activity, as well as glucose transporters (GLUT 2 and GLUT 4), and glycogen levels. In addition, histoarchitecture of the liver of diabetic rats administered FREGL (especially at the low dose) was also ameliorated. CONCLUSION: Hence, FREGL (particularly at a low dose) may play a substantial role in mitigating the hepatopathy complication associated with diabetes mellitus.


Apocynaceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Apocynaceae/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Flavonoids/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/metabolism , Plant Extracts/therapeutic use , Plant Leaves/metabolism , Rats , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , alpha-2-HS-Glycoprotein/metabolism
6.
Biomarkers ; 27(2): 169-177, 2022 Mar.
Article En | MEDLINE | ID: mdl-34951557

INTRODUCTION: The present study access the effect of the flavonoid-rich extract from Gongronema latifolium against cardiomyopathy streptozotocin-induced diabetic rats. MATERIALS AND METHODS: The flavonoid-rich extract from G. latifolium leaf (FREGL) was prepared using a standard method. Diabetes was induced by a single intraperitoneal (i.p.) injection of streptozotocin. The experimental animals were divided into five groups as non-diabetic rats, diabetic control, diabetic rats administered low and high doses of FREGL (13 and 26 mg/kg), and metformin-glibenclamide orally for 21 days. Hence, the experimental animals were sacrificed; blood and heart were harvested to determine diverse biochemical parameters, including the gene expressions of serpin A3 and socs3-a as well as histological examination. RESULTS: The results demonstrated that FREGL significantly (p < 0.05) reduced fasting blood glucose, total cholesterol, low density lipoprotein (LDL), triglyceride (TG), lipid peroxidation levels, as well as the activities of lactate dehydrogenase and creatine kinase-MB, including the relative gene expressions of serpin A3 and Socs3-A in diabetic rats. Also, diabetic rats that received different doses of FREGL showed a substantial rise in insulin and high density lipoprotein (HDL) levels, antioxidant enzyme activities, as well as, normal histoarchitecture of the heart tissues. CONCLUSION: Therefore, FREGL may be beneficial in alleviating diabetic cardiomyopathy.


Apocynaceae , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Serpins , Animals , Apocynaceae/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/drug therapy , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Rats , Rats, Wistar , Streptozocin/adverse effects , Suppressor of Cytokine Signaling 3 Protein
...