Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132622

RESUMEN

Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.

2.
Sci Transl Med ; 11(518)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723037

RESUMEN

Micronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption. We identified poly(butylmethacrylate-co-(2-dimethylaminoethyl)methacrylate-co-methylmethacrylate) (1:2:1) (BMC) as a material with proven safety, offering stability in boiling water, rapid dissolution in gastric acid, and the ability to encapsulate distinct micronutrients. We encapsulated 11 micronutrients (iron; iodine; zinc; and vitamins A, B2, niacin, biotin, folic acid, B12, C, and D) and co-encapsulated up to 4 micronutrients. Encapsulation improved micronutrient stability against heat, light, moisture, and oxidation. Rodent studies confirmed rapid micronutrient release in the stomach and intestinal absorption. Bioavailability of iron from microparticles, compared to free iron, was lower in an initial human study. An organotypic human intestinal model revealed that increased iron loading and decreased polymer content would improve absorption. Using process development approaches capable of kilogram-scale synthesis, we increased iron loading more than 30-fold. Scaled batches tested in a follow-up human study exhibited up to 89% relative iron bioavailability compared to free iron. Collectively, these studies describe a broad approach for clinical translation of a heat-stable ingestible micronutrient delivery platform with the potential to improve micronutrient deficiency in the developing world. These approaches could potentially be applied toward clinical translation of other materials, such as natural polymers, for encapsulation and oral delivery of micronutrients.


Asunto(s)
Calor , Micronutrientes/administración & dosificación , Microesferas , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Preparaciones de Acción Retardada , Liberación de Fármacos , Femenino , Humanos , Ácido Hialurónico/química , Absorción Intestinal , Intestinos/fisiología , Hierro/metabolismo , Metacrilatos/química , Ratones , Oxidación-Reducción , Rayos Ultravioleta , Vitamina A/metabolismo , Agua
3.
J Am Chem Soc ; 125(37): 11138-9, 2003 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-16220902

RESUMEN

The sonication of ionic organic liquids leads to decomposition of the liquids. Multibubble sonoluminescence spectra and headgas analysis reveal a variety of decomposition products from the sonolysis of N,N'-dialkylimidazolium ionic liquids. The decomposition is a result of acoustic cavitation, which generates localized hot spots from the implosive collapse of bubbles in the ionic liquids. Despite the negligible vapor pressure of the ionic liquids, reaction still occurs in a heated shell of the bubbles or from microdroplets thrown into the collapsing bubbles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA