Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38602496

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Carboxylic Acids , Mutation , Oxygen , Photosystem II Protein Complex , Calcium/metabolism , Calcium/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Electron Spin Resonance Spectroscopy , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared
2.
J Am Chem Soc ; 146(8): 5045-5050, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38358932

Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.

3.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-37871234

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

4.
Inorg Chem ; 62(24): 9538-9551, 2023 Jun 19.
Article En | MEDLINE | ID: mdl-37279403

We report the facile photochemical generation of a library of Ni(I)-bpy halide complexes (Ni(I)(Rbpy)X (R = t-Bu, H, MeOOC; X = Cl, Br, I) and benchmark their relative reactivity toward competitive oxidative addition and off-cycle dimerization pathways. Structure-function relationships between the ligand set and reactivity are developed, with particular emphasis on rationalizing previously uncharacterized ligand-controlled reactivity toward high energy and challenging C(sp2)-Cl bonds. Through a dual Hammett and computational analysis, the mechanism of the formal oxidative addition is found to proceed through an SNAr-type pathway, consisting of a nucleophilic two-electron transfer between the Ni(I) 3d(z2) orbital and the Caryl-Cl σ* orbital, which contrasts the mechanism previously observed for activation of weaker C(sp2)-Br/I bonds. The bpy substituent provides a strong influence on reactivity, ultimately determining whether oxidative addition or dimerization even occurs. Here, we elucidate the origin of this substituent influence as arising from perturbations to the effective nuclear charge (Zeff) of the Ni(I) center. Electron donation to the metal decreases Zeff, which leads to a significant destabilization of the entire 3d orbital manifold. Decreasing the 3d(z2) electron binding energies leads to a powerful two-electron donor to activate strong C(sp2)-Cl bonds. These changes also prove to have an analogous effect on dimerization, with decreases in Zeff leading to more rapid dimerization. Ligand-induced modulation of Zeff and the 3d(z2) orbital energy is thus a tunable target by which the reactivity of Ni(I) complexes can be altered, providing a direct route to stimulate reactivity with even stronger C-X bonds and potentially unveiling new ways to accomplish Ni-mediated photocatalytic cycles.

5.
J Am Chem Soc ; 145(27): 14592-14598, 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37366634

The S2 state of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) shows high-spin (HS) and low-spin (LS) EPR signals attributed to distinct structures based on computation. Five-coordinate MnIII centers are proposed in these species but are absent in available spectroscopic model complexes. Herein, we report the synthesis, crystal structure, electrochemistry, SQUID magnetometry, and EPR spectroscopy of a MnIIIMnIV3O4 cuboidal complex featuring five-coordinate MnIII. This cluster displays a spin ground state of S = 5/2, while conversion to a six-coordinate Mn upon treatment with water results in a spin state change to S = 1/2. These results demonstrate that coordination number, without dramatic changes within the Mn4O4 core, has a substantial effect on spectroscopy.

6.
J Biol Chem ; 299(4): 103047, 2023 04.
Article En | MEDLINE | ID: mdl-36822327

Human cleavage and polyadenylation specificity factor (CPSF)73 (also known as CPSF3) is the endoribonuclease that catalyzes the cleavage reaction for the 3'-end processing of pre-mRNAs. The active site of CPSF73 is located at the interface between a metallo-ß-lactamase domain and a ß-CASP domain. Two metal ions are coordinated by conserved residues, five His and two Asp, in the active site, and they are critical for the nuclease reaction. The metal ions have long been thought to be zinc ions, but their exact identity has not been examined. Here we present evidence from inductively coupled plasma mass spectrometry and X-ray diffraction analyses that a mixture of metal ions, including Fe, Zn, and Mn, is present in the active site of CPSF73. The abundance of the various metal ions is different in samples prepared from different expression hosts. Zinc is present at less than 20% abundance in a sample expressed in insect cells, but the sample is active in cleaving a pre-mRNA substrate in a reconstituted canonical 3'-end processing machinery. Zinc is present at 75% abundance in a sample expressed in human cells, which has comparable endonuclease activity. We also observe a mixture of metal ions in the active site of the CPSF73 homolog INTS11, the endonuclease for Integrator. Taken together, our results provide further insights into the role of metal ions in the activity of CPSF73 and INTS11 for RNA 3'-end processing.


Cleavage And Polyadenylation Specificity Factor , Endonucleases , Humans , Catalytic Domain , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/metabolism , Endonucleases/chemistry , Endonucleases/metabolism , RNA Processing, Post-Transcriptional , Zinc/metabolism
7.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36534001

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

8.
Inorg Chem ; 62(5): 1791-1796, 2023 Feb 06.
Article En | MEDLINE | ID: mdl-35829634

Synthetic complexes provide useful models to study the interplay between the structure and spectroscopy of the different Sn-state intermediates of the oxygen-evolving complex (OEC) of photosystem II (PSII). Complexes containing the MnIV4 core corresponding to the S3 state, the last observable intermediate prior to dioxygen formation, remain very rare. Toward the development of synthetic strategies to stabilize highly oxidized tetranuclear complexes, ligands with increased anion charge were pursued. Herein, we report the synthesis, electrochemistry, SQUID magnetometry, and electron paramagnetic resonance spectroscopy of a stable MnIV4O4 cuboidal complex supported by a disiloxide ligand. The substitution of an anionic acetate or amidate ligand with a dianionic disiloxide ligand shifts the reduction potential of the MnIIIMnIV3/MnIV4 redox couple by up to ∼760 mV, improving stability. The S = 3 spin ground state of the siloxide-ligated MnIV4O4 complex matches the acetate and amidate variants, in corroboration with the MnIV4 assignment of the S3 state of the OEC.

9.
J Am Chem Soc ; 144(42): 19272-19283, 2022 10 26.
Article En | MEDLINE | ID: mdl-36240444

Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.


Chloride Peroxidase , Coordination Complexes , Electron Spin Resonance Spectroscopy , Electrons , Oxygen/chemistry , Ligands , Heme/chemistry , Cytochrome P-450 Enzyme System/chemistry , Coordination Complexes/chemistry
10.
Angew Chem Int Ed Engl ; 61(43): e202209655, 2022 Oct 24.
Article En | MEDLINE | ID: mdl-35973965

Terminal iron nitrides (Fe≡N) have been proposed as intermediates of Fe-mediated nitrogen fixation, and well-defined synthetic iron nitrides have been characterized in high oxidation states, including FeIV , FeV , and FeVI . This study reports the generation and low temperature characterization of a terminally bound iron(III) nitride, P3 B Fe(N) (P3 B =tris(o-diisopropylphosphinophenyl)borane), which is a proposed intermediate of iron-mediated nitrogen fixation by the P3 B Fe-catalyst system. CW- and pulse EPR spectroscopy (HYSCORE and ENDOR), supported by DFT calculations, help to define a 2 A ground state electronic structure of this C3 -symmetric nitride species, placing the unpaired spin in a sigma orbital along the B-Fe-N vector; this electronic structure is distinct for an iron nitride. The unusual d5 -configuration is stabilized by significant delocalization (≈50 %) of the unpaired electron onto the axial boron and nitrogen ligands, with a majority of the spin residing on boron.


Boranes , Iron , Iron/chemistry , Ligands , Nitrogen Fixation , Boron , Electron Spin Resonance Spectroscopy , Nitrogen/chemistry
11.
Chem Sci ; 13(23): 7034-7045, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35774181

The second quantum revolution harnesses exquisite quantum control for a slate of diverse applications including sensing, communication, and computation. Of the many candidates for building quantum systems, molecules offer both tunability and specificity, but the principles to enable high temperature operation are not well established. Spin-lattice relaxation, represented by the time constant T 1, is the primary factor dictating the high temperature performance of quantum bits (qubits), and serves as the upper limit on qubit coherence times (T 2). For molecular qubits at elevated temperatures (>100 K), molecular vibrations facilitate rapid spin-lattice relaxation which limits T 2 to well below operational minimums for certain quantum technologies. Here we identify the effects of controlling orbital angular momentum through metal coordination geometry and ligand rigidity via π-conjugation on T 1 relaxation in three four-coordinate Cu2+ S = ½ qubit candidates: bis(N,N'-dimethyl-4-amino-3-penten-2-imine) copper(ii) (Me2Nac)2 (1), bis(acetylacetone)ethylenediamine copper(ii) Cu(acacen) (2), and tetramethyltetraazaannulene copper(ii) Cu(tmtaa) (3). We obtain significant T 1 improvement upon changing from tetrahedral to square planar geometries through changes in orbital angular momentum. T 1 is further improved with greater π-conjugation in the ligand framework. Our electronic structure calculations reveal that the reduced motion of low energy vibrations in the primary coordination sphere slows relaxation and increases T 1. These principles enable us to report a new molecular qubit candidate with room temperature T 2 = 0.43 µs, and establishes guidelines for designing novel qubit candidates operating above 100 K.

12.
Inorg Chem ; 61(24): 8992-8996, 2022 Jun 20.
Article En | MEDLINE | ID: mdl-35658408

The first encoded SARS-CoV-2 protein (Nsp1) binds to the human 40S ribosome and blocks synthesis of host proteins, thereby inhibiting critical elements of the innate immune response. The final 33 residues of the natively unstructured Nsp1 C-terminus adopt a helix-turn-helix geometry upon binding to the ribosome. We have characterized the fluctuating conformations of this peptide using circular dichroism spectroscopy along with measurements of tryptophan fluorescence and energy transfer. Tryptophan fluorescence decay kinetics reveal that copper(II) binds to the peptide at micromolar concentrations, and electron paramagnetic resonance spectroscopy indicates that the metal ion coordinates to the lone histidine residue.


COVID-19 , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Circular Dichroism , Copper/chemistry , Humans , Peptides/chemistry , Tryptophan/chemistry , Viral Nonstructural Proteins/chemistry , Virulence Factors
13.
J Am Chem Soc ; 144(10): 4550-4558, 2022 03 16.
Article En | MEDLINE | ID: mdl-35253433

Transition-metal catalysis of substitution reactions of alkyl electrophiles by nitrogen nucleophiles is beginning to emerge as a powerful strategy for synthesizing higher-order amines, as well as controlling their stereochemistry. Herein, we report that a readily accessible chiral copper catalyst (commercially available components) can achieve the photoinduced, enantioconvergent coupling of a variety of racemic tertiary alkyl electrophiles with aniline nucleophiles to generate a new C-N bond with good ee at the fully substituted stereocenter of the product; whereas this photoinduced, copper-catalyzed coupling proceeds at -78 °C, in the absence of light and catalyst, virtually no C-N bond formation is observed even upon heating to 80 °C. The mechanism of this new catalytic enantioconvergent substitution process has been interrogated with the aid of a wide array of tools, including the independent synthesis of proposed intermediates and reactivity studies, spectroscopic investigations featuring photophysical and EPR data, and DFT calculations. These studies led to the identification of three copper-based intermediates in the proposed catalytic cycle, including a chiral three-coordinate formally copper(II)-anilido (DFT analysis points to its formulation as a copper(I)-anilidyl radical) complex that serves as a persistent radical that couples with a tertiary organic radical to generate the desired C-N bond with good enantioselectivity.


Amines , Copper , Alkylation , Amines/chemistry , Aniline Compounds , Catalysis , Copper/chemistry
14.
J Am Chem Soc ; 144(9): 4114-4123, 2022 03 09.
Article En | MEDLINE | ID: mdl-35167268

Whereas photoinduced, copper-catalyzed couplings of nitrogen nucleophiles with alkyl electrophiles have recently been shown to provide an attractive approach to achieving a variety of enantioselective C-N bond constructions, mechanistic studies of these transformations have lagged the advances in reaction development. Herein we provide mechanistic insight into a previously reported photoinduced, copper-catalyzed enantioconvergent C-N coupling of a carbazole nucleophile with a racemic tertiary α-haloamide electrophile. Building on the isolation of a copper(II) model complex whose EPR parameters serve as a guide, we independently synthesize two key intermediates in the proposed catalytic cycle, a copper(II) metalloradical (L*CuII(carb')2) (L* = a monodentate chiral phosphine ligand; carb' = a carbazolide ligand), as well as a tertiary α-amide organic radical (R·); the generation and characterization of R· was guided by DFT calculations, which suggested that it would be stable to homocoupling. Continuous-wave (CW) and pulse EPR studies, along with corresponding DFT calculations, are among the techniques used to characterize these reactive radicals. We establish that these two radicals do indeed combine to furnish the C-N coupling product in good yield and with significant enantiomeric excess (77% yield, 55% ee), thereby supporting the chemical competence of these proposed intermediates. DFT calculations are consistent with R· initially binding to copper(II) via a dative interaction from the closed-shell carbonyl oxygen atom of the radical, which positions the α-carbon for direct reaction with the copper(II)-bound carbazole N atom, to generate the C-N bond with enantioselectivity, without the formation of an alkylcopper(III) intermediate.


Copper , Alkylation , Catalysis , Copper/chemistry , Ligands , Stereoisomerism
15.
Angew Chem Int Ed Engl ; 60(52): 27220-27224, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34695278

We report the synthesis and spectroscopic characterization of a series of iron-carbene complexes in redox states {Fe=C(H)Ar}10-11 . Pulse EPR studies of the 1,2 H and 13 C isotopologues of {Fe=C(H)Ar}11 reveal the high covalency of the Fe-carbene bonding, leading to a more even spin distribution than commonly observed for reduced Fischer carbenes.

16.
J Am Chem Soc ; 143(33): 13091-13102, 2021 Aug 25.
Article En | MEDLINE | ID: mdl-34379389

Open-shell compounds bearing metal-carbon triple bonds, such as carbides and carbynes, are of significant interest as plausible intermediates in the reductive catenation of C1 oxygenates. Despite the abundance of closed-shell carbynes reported, open-shell variants are very limited, and an open-shell carbide has yet to be reported. Herein, we report the synthesis of the first terminal, open-shell carbide complexes, [K][1] and [1][BArF4] (1 = P2Mo(≡C:)(CO), P2 = a terphenyl diphosphine ligand), which differ by two redox states, as well as a series of related open-shell carbyne complexes. The complexes are characterized by single-crystal X-ray diffraction and NMR, EPR, and IR spectroscopies, while the electronic structures are probed by EPR studies and DFT calculations to assess spin delocalization. In the d1 complexes, the spin is primarily localized on the metal (∼55-77% Mo dxy) with delocalization on the triply bonded carbon of ∼0.05-0.09 e-. In the reduced carbide [K][1], a direct metal-arene interaction enables ancillary ligand reduction, resulting in reduced radical character on the terminal carbide (⩽0.02 e-). Reactivity studies with [K][1] reveal the formation of mixed-valent C-C coupled products at -40 °C, illustrating how productive reactivity manifolds can be engendered through the manipulation of redox states. Combined, the results inform on the electronic structure and reactivity of a new and underrepresented class of compounds with potential significance to a wide array of reactions involving open-shell species.

17.
Angew Chem Int Ed Engl ; 60(32): 17671-17679, 2021 08 02.
Article En | MEDLINE | ID: mdl-34042234

We report the single crystal XRD and MicroED structure, magnetic susceptibility, and EPR data of a series of CaMn3IV O4 and YMn3IV O4 complexes as structural and spectroscopic models of the cuboidal subunit of the oxygen-evolving complex (OEC). The effect of changes in heterometal identity, cluster geometry, and bridging oxo protonation on the spin-state structure was investigated. In contrast to previous computational models, we show that the spin ground state of CaMn3IV O4 complexes and variants with protonated oxo moieties need not be S=9/2. Desymmetrization of the pseudo-C3 -symmetric Ca(Y)Mn3IV O4 core leads to a lower S=5/2 spin ground state. The magnitude of the magnetic exchange coupling is attenuated upon oxo protonation, and an S=3/2 spin ground state is observed in CaMn3IV O3 (OH). Our studies complement the observation that the interconversion between the low-spin and high-spin forms of the S2 state is pH-dependent, suggesting that the (de)protonation of bridging or terminal oxygen atoms in the OEC may be connected to spin-state changes.


Biomimetic Materials/chemistry , Bridged-Ring Compounds/chemistry , Coordination Complexes/chemistry , Protons , Biomimetic Materials/chemical synthesis , Bridged-Ring Compounds/chemical synthesis , Calcium/chemistry , Coordination Complexes/chemical synthesis , Electron Spin Resonance Spectroscopy , Manganese/chemistry , Molecular Structure , Photosystem II Protein Complex/chemistry , Yttrium/chemistry
18.
Angew Chem Int Ed Engl ; 60(8): 4009-4013, 2021 Feb 19.
Article En | MEDLINE | ID: mdl-33152166

M(NHx ) intermediates involved in N-N bond formation are central to ammonia oxidation (AO) catalysis, an enabling technology to ultimately exploit ammonia (NH3 ) as an alternative fuel source. While homocoupling of a terminal amide species (M-NH2 ) to form hydrazine (N2 H4 ) has been proposed, well-defined examples are without precedent. Herein, we discuss the generation and electronic structure of a NiIII -NH2 species that undergoes bimolecular coupling to generate a NiII 2 (N2 H4 ) complex. This hydrazine adduct can be further oxidized to a structurally unusual Ni2 (N2 H2 ) species; this releases N2 in the presence of NH3 , thus establishing a synthetic cycle for Ni-mediated AO. Distribution of the redox load for H2 N-NH2 formation via NH2 coupling between two metal centers presents an attractive strategy for AO catalysis using Earth-abundant, late first-row metals.

19.
J Am Chem Soc ; 142(44): 18963-18970, 2020 11 04.
Article En | MEDLINE | ID: mdl-33103877

Highly reactive organometallic species that mediate reductive proton-coupled electron transfer (PCET) reactions are an exciting area for development in catalysis, where a key objective focuses on tuning the reactivity of such species. This work pursues ligand-induced activation of a stable organometallic complex toward PCET reactivity. This is studied via the conversion of a prototypical Cp*FeIII-H species, [FeIII(η5-Cp*)(dppe)H]+ (Cp* = C5Me5-, dppe = 1,2-bis(diphenylphosphino)ethane), to a highly reactive, S = 1/2 ring-protonated endo-Cp*H-Fe relative, triggered by the addition of CO. Our assignment of the latter ring-protonated species contrasts with its previous reported formulation, which instead assigned it as a hypervalent 19-electron hydride, [FeIII(η5-Cp*)(dppe)(CO)H]+. Herein, pulse EPR spectroscopy (1,2H HYSCORE, ENDOR) and X-ray crystallography, with corresponding DFT studies, cement its assignment as the ring-protonated isomer, [FeI(endo-η4-Cp*H)(dppe)(CO)]+. A less sterically shielded and hence more reactive exo-isomer can be generated through oxidation of a stable Fe0(exo-η4-Cp*H)(dppe)(CO) precursor. Both endo- and exo-ring-protonated isomers are calculated to have an exceptionally low bond dissociation free energy (BDFEC-H ≈ 29 kcal mol-1 and 25 kcal mol-1, respectively) cf. BDFEFe-H of 56 kcal mol-1 for [FeIII(η5-Cp*)(dppe)H]+. These weak C-H bonds are shown to undergo proton-coupled electron transfer (PCET) to azobenzene to generate diphenylhydrazine and the corresponding closed-shell [FeII(η5-Cp*)(dppe)CO]+ byproduct.

20.
J Phys Chem A ; 124(44): 9252-9260, 2020 Nov 05.
Article En | MEDLINE | ID: mdl-33112149

Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin-orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin-phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.

...