Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38759303

RESUMEN

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Asunto(s)
Epidermis , Formaldehído , Animales , Fosforilación/efectos de los fármacos , Ratones , Masculino , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Antígenos CD11/metabolismo , Nocicepción/efectos de los fármacos , Humanos
2.
Biochem Biophys Res Commun ; 708: 149813, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38522403

RESUMEN

The chemotherapeutic agent tegafur, a prodrug that prolongs the half-life of fluorouracil (5-FU), exerts antitumor effects against various cancers. Since tegafur is metabolized to 5-FU by CYP2A6 in the liver, the expression of CYP2A6 determines the effect of tegafur. Here, we report that the expression rhythm of Cyp2a5, a homolog of human CYP2A6, in female mice causes dosing time-dependent differences in tegafur metabolism. In the livers of female mice, CYP2A5 expression showed a circadian rhythm, peaking during the dark period. This rhythm is regulated by RORA, a core clock component, and abrogation of the CYP2A5 activity abolished the time-dependent difference in the rate of tegafur metabolism in female mice. Furthermore, administration of tegafur to mice transplanted with 4T1 breast cancer cells during the dark period suppressed increases in tumor size compared to female mice treated during the light period. Our findings reveal a novel relationship between 5-FU prodrugs and circadian clock machinery, potentially influencing antitumor effects, and contributing to the development of time-aware chemotherapy regimens for breast cancer.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Neoplasias de la Mama , Femenino , Humanos , Animales , Ratones , Tegafur/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Fluorouracilo/farmacología , Fluorouracilo/metabolismo , Ritmo Circadiano
3.
Protein Expr Purif ; 218: 106450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38395208

RESUMEN

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the global pandemic of COVID-19 in 2020. Through structural analysis, it was found that several amino acid residues in the human angiotensin-converting enzyme-2 (hACE2) receptor directly interact with those in the receptor binding domain (RBD) of the spike glycoprotein (S-protein). Various cell lines, including HEK293, HeLa cells, and the baculovirus expression vector system (BEVS) with the insect cell line Sf9, have been utilized to produce the RBD. In this study, we investigated the use of Bombyx mori nucleopolyhedrovirus (BmNPV) and BEVS. For efficient production of a highly pure recombinant RBD protein, we designed it with two tags (His tag and STREP tag) at the C-terminus and a solubilizing tag (SUMO) at the N-terminus. After expressing the protein using BmNPV and silkworm and purifying it with a HisTrap excel column, the eluted protein was digested with SUMO protease and further purified using a Strep-Tactin Superflow column. As a result, we obtained the RBD as a monomer with a yield of 2.6 mg/10 mL serum (equivalent to 30 silkworms). The RBD showed an affinity for the hACE2 receptor. Additionally, the RBDs from the Alpha, Beta, Gamma, Delta, and Omicron variants were expressed and purified using the same protocol. It was found that the RBD from the Alpha, Beta, Gamma, and Delta variants could be obtained with yields of 1.4-2.6 mg/10 mL serum and had an affinity to the hACE2 receptor.


Asunto(s)
Bombyx , COVID-19 , Nucleopoliedrovirus , Animales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Bombyx/genética , Bombyx/metabolismo , Células HeLa , Células HEK293 , Proteínas Recombinantes , Unión Proteica
4.
Transl Res ; 269: 31-46, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38401836

RESUMEN

Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.


Asunto(s)
Homoharringtonina , Ratones Endogámicos C57BL , Extractos Vegetales , Receptores Acoplados a Proteínas G , Insuficiencia Renal Crónica , Animales , Receptores Acoplados a Proteínas G/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/complicaciones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Masculino , Homoharringtonina/farmacología , Homoharringtonina/uso terapéutico , Ratones , Citocinas/metabolismo , Fibrosis , Humanos , Cardiopatías/tratamiento farmacológico , Cardiopatías/etiología
5.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339125

RESUMEN

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Asunto(s)
Cardiomiopatías , Oxidorreductasas Intramoleculares , Lipocalinas , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Mastocitos/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , Pericitos/metabolismo
6.
J Pharmacol Exp Ther ; 388(1): 218-227, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38050132

RESUMEN

Although vancomycin (VCM)-frequently used to treat drug-resistant bacterial infections-often induces acute kidney injury (AKI), discontinuation of the drug is the only effective treatment; therefore, analysis of effective avoidance methods is urgently needed. Here, we report the differences in the induction of AKI by VCM in 1/2-nephrectomized mice depending on the time of administration. Despite the lack of difference in the accumulation of VCM in the kidney between the light (ZT2) and dark (ZT14) phases, the expression of AKI markers due to VCM was observed only in the ZT2 treatment. Genomic analysis of the kidney suggested that the time of administration was involved in VCM-induced changes in monocyte and macrophage activity, and VCM had time-dependent effects on renal macrophage abundance, ATP activity, and interleukin (IL)-1ß expression. Furthermore, the depletion of macrophages with clodronate abolished the induction of IL-1ß and AKI marker expression by VCM administration at ZT2. This study provides evidence of the need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced AKI as well as the potential for macrophage-targeted AKI therapy. SIGNIFICANCE STATEMENT: There is a time of administration at which vancomycin (VCM)-induced renal injury is more and less likely to occur, and macrophages are involved in this difference. Therefore, there is a need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced acute kidney injury as well as the potential for macrophage-targeted acute kidney injury therapy.


Asunto(s)
Lesión Renal Aguda , Vancomicina , Ratones , Animales , Vancomicina/farmacología , Vancomicina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Riñón , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Macrófagos
7.
Protein Sci ; 32(12): e4831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924310

RESUMEN

Protein aggregations decrease production yields and impair the efficacy of therapeutics. The CH2 domain is a crucial part of the constant region of human IgG. But, it is also the least stable domain in IgG, which can result in antibody instability and aggregation problems. We created a novel mutant of the CH2 domain (T250C/L314C, mut10) by introducing a disulfide bond and expressed it using Pichia pastoris. The mut10 variant exhibited enhanced thermal stability, resistance to enzymatic degradation, and reduced aggregation in comparison to the original CH2 domain. However, it was less stable than mut20 (L242C/K334C), which is the variant prepared in a previous study (Gong et al., J. Biol. Chem., 2009). A more advanced mutant, mut25, was created by combining mut10 and mut20. Mut25 artificially contains two disulfide bonds. The new mutant, mut25, showed enhanced thermal stability, increased resistance to enzymatic digestion, and reduced aggregation in comparison to mut20. According to our knowledge, mut25 achieves an unprecedented level of stability among the humanized whole CH2 domains that have been reported so far. Mut25 has the potential to serve as a new platform for antibody therapeutics due to its ability to reduce immunogenicity by decreasing aggregation.


Asunto(s)
Saccharomycetales , Humanos , Dominios Proteicos , Inmunoglobulina G/química , Disulfuros/química , Pichia/genética , Pichia/metabolismo
8.
Biochem Biophys Res Commun ; 675: 92-98, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463524

RESUMEN

Chronic kidney disease (CKD) induces an imbalance in the intestinal microbiota, affecting various physiological functions and leading to cardiovascular inflammation and fibrosis. However, the cardiotoxic impact of intestinal microbiota-derived uremic substances in advanced renal dysfunction remains unexplored. Therefore, we developed a 5/6 nephrectomy (5/6Nx) mouse model to investigate the intestinal microbiota and the effects of administering vancomycin (VCM) on the microbiota and the cardiac pathology associated with CKD. Despite VCM administration after the development of irreversible glomerulosclerosis and tubulointerstitial fibrosis, blood indoxyl sulfate and phenyl sulfate levels, which are intestinal bacteria-derived uremic substances, brain natriuretic peptide levels, and the fibrotic area in the heart were decreased. Moreover, VCM administration prevented 5/6Nx-induced weight loss and prolonged survival time. Our findings suggest that VCM-induced changes in the intestinal microbiota composition ameliorate heart failure and improve survival rates by reducing intestinal microbiota-derived cardiotoxic substances despite advanced renal dysfunction. This highlights the potential of using the intestinal microbiota as a target to prevent and treat cardiovascular conditions associated with CKD.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Ratones , Animales , Vancomicina/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Fibrosis , Administración Oral
9.
Intern Med ; 61(23): 3563-3568, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36450453

RESUMEN

Chest computed tomography (CT) of a 76-year-old woman with bronchial asthma showed multiple lung nodules with high CT densities that were compatible with high-attenuation mucoid (HAM) impactions characteristic of allergic bronchopulmonary mycosis (ABPM). Follow-up chest CT revealed increased sizes of multiple lung nodules. However, a left upper lobe nodule showed lower CT density than the other HAM impactions. A transbronchial lung biopsy of that upper lobe nodule revealed lung adenocarcinoma. Measuring the CT density is important for the differential diagnosis of lung nodules when following ABPM patients. Our patient's increased serum carcinoembryonic antigen levels were associated with peripheral blood eosinophilia. Mucoid impaction in the lung was positively stained with carcinoembryonic antigen and showed the distribution of eosinophilic granules.


Asunto(s)
Adenocarcinoma del Pulmón , Aspergilosis Pulmonar Invasiva , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Femenino , Humanos , Anciano , Antígeno Carcinoembrionario , Adenocarcinoma del Pulmón/complicaciones , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico por imagen
10.
Protein Expr Purif ; 195-196: 106096, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460871

RESUMEN

Plasmodium vivax ookinete surface protein, Pvs25, is a candidate for a transmission-blocking vaccine (TBV) for malaria. Pvs25 has four EGF-like domains containing 22 cysteine residues forming 11 intramolecular disulfide bonds, a structural feature that makes its recombinant protein expression difficult. In this study, we report the high expression of recombinant Pvs25 as a soluble form in silkworm, Bombyx mori. The Pvs25 protein was purified from hemolymphs of larvae and pupae by affinity chromatography. In the Pvs25 expressed by silkworm, no isoforms with inappropriate disulfide bonds were found, requiring no further purification step, which is necessary in the case of Pichia pastoris-based expression systems. The Pvs25 from silkworm was confirmed to be molecularly uniform by sodium dodecyl sulfate gel electrophoresis and size-exclusion chromatography. To examine the immunogenicity, the Pvs25 from B. mori was administered to BALB/c mice subcutaneously with oil adjuvant. The Pvs25 produced by silkworm induced potent and robust immune responses, and the induced antisera correctly recognized P. vivax ookinetes in vitro, demonstrating the potency of Pvs25 from silkworm as a candidate for a malaria TBV. To the best of our knowledge, this is the first study to construct a system for mass-producing malaria TBV antigens using silkworm.


Asunto(s)
Bombyx , Vacunas contra la Malaria , Malaria Vivax , Animales , Antígenos de Protozoos/genética , Antígenos de Superficie , Bombyx/genética , Disulfuros , Vacunas contra la Malaria/genética , Malaria Vivax/prevención & control , Ratones , Plasmodium vivax/genética
11.
Biochem Biophys Res Commun ; 558: 114-119, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33915325

RESUMEN

The CH2 domain is a critical element of the human Immunoglobulin G (IgG) constant region. Although the CH2 domain is the least stable domain in IgG, it is also a promising scaffold candidate for developing novel therapeutic approaches. Recently, we succeeded in preparing glycosylated and non-glycosylated CH2 domain in the host organism Pichia pastoris. Herein, we verified that glycosylation of the CH2 domain decreased both, its tendency to aggregate and its immunogenicity in mice, suggesting that aggregation and immunogenicity are related. In addition, we have produced in P. pastoris a stabilized version of the CH2 domain with and without glycan, and their propensity to aggregate evaluated. We found that stabilization alone significantly decreased the aggregation of the CH2 domain. Moreover, the combination of glycosylation and stabilization completely suppressed its aggregation behavior. Since protein aggregation is related to immunogenicity, the combination of glycosylation and stabilization to eliminate the aggregation behavior of a protein could be a fruitful strategy to generate promising immunoglobulin scaffolds.


Asunto(s)
Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Animales , Anticuerpos Antiidiotipos/biosíntesis , Fenómenos Biofísicos , Femenino , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Agregado de Proteínas/genética , Dominios Proteicos , Ingeniería de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
12.
J Biochem ; 170(2): 289-297, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33772592

RESUMEN

Pichia pastoris is a popular eukaryotic system employed for the fast, simple and inexpensive production of recombinant protein including biotherapeutics such as human albumin. The CH2 domain of human Immunoglobulin G (IgG) is a promising scaffold for developing novel therapeutics. To accelerate the research of CH2 domain, we have established a procedure to highly express human CH2 domain (∼150 mg/l) as well as human Fc (∼30 mg/l) in yeast P. pastoris. The procedure yields, simultaneously, a major glycosylated (∼70%) and non-glycosylated (∼30%) fractions. They can be easily separated with high purity. Although both forms of CH2 domain have essentially the same secondary structure, the presence of the glycan increased the thermal stability of the CH2 domain by about 5°C as determined from calorimetry. The purified glycosylated CH2 domain elicited polyclonal antibodies in mouse, recognizing not only the CH2 domain, but also recombinant human Fc and the commercial IgG1 antibody Rituxan. Protein A and Protein G binding to the kink region between CH2 domain and CH3 domain of human Fc are used to purify therapeutic proteins. Therefore, these antibodies are candidates to develop a novel affinity material to purify human antibodies using their CH2 domain.


Asunto(s)
Anticuerpos/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Saccharomycetales/metabolismo , Animales , Formación de Anticuerpos , Electroforesis en Gel de Poliacrilamida/métodos , Femenino , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Pichia/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
13.
Front Immunol ; 12: 803647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095889

RESUMEN

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


Asunto(s)
Compuestos de Alumbre/farmacología , Hidróxido de Aluminio/farmacología , Bombyx/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Línea Celular , Pollos/genética , Pollos/inmunología , Chlorocebus aethiops , Euglena gracilis/inmunología , Infecciones por Euglenozoos/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Células Vero
14.
Int J Chron Obstruct Pulmon Dis ; 13: 2525-2532, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174422

RESUMEN

Background: Asthma-COPD overlap (ACO) is difficult to diagnose because it is characterized by persistent airflow limitation, and patients present with several manifestations that are usually associated with both asthma and COPD. In this retrospective study, we aimed to evaluate the diagnostic accuracy of fractional exhaled nitric oxide (FeNO) and blood eosinophil counts for the clinical diagnosis of ACO. Patients and methods: A total of 121 patients were divided into two study groups, COPD alone or ACO, which was based on criteria from the joint document by the Global Initiative for Asthma and the Global initiative for chronic Obstructive Lung Disease. From July 2014 to April 2017, FeNO levels and blood eosinophil counts were measured in specimens from patients naïve to inhaled corticosteroids (ICS) and those using ICS. Receiver operating characteristic curve analysis was used to determine the cutoff values of FeNO and blood eosinophil levels that provided the best differential diagnosis between ACO and COPD. Results: Among a total of 121 patients, 65 patients were diagnosed with COPD and 56 patients with ACO. The FeNO level was higher in patients with ACO than in patients with COPD (median 24.5 vs 16.0 ppb, respectively; P<0.01). Among patients naïve to ICS, the area under the receiver operating characteristic curve of FeNO values was 0.726, and the optimal diagnostic cutoff level of FeNO was 25.0 ppb, with 60.6% sensitivity and 87.7% specificity for differentiating ACO from COPD. FeNO (≥25.0 ppb) combined with blood eosinophil counts (≥250/µL) showed 96.1% specificity. Conclusion: These results demonstrate that the FeNO level combined with blood eosinophil count is useful for the differential diagnosis between ACO and COPD.


Asunto(s)
Asma/diagnóstico , Eosinófilos , Óxido Nítrico/análisis , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Anciano , Asma/complicaciones , Biomarcadores/análisis , Pruebas Respiratorias , Femenino , Humanos , Recuento de Leucocitos , Masculino , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad
15.
Cardiovasc Res ; 70(1): 88-96, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16545787

RESUMEN

OBJECTIVE: Sphingosine-1-phosphate (S-1-P), a potent lysophospholipid mediator which is released from platelets during clotting, activates a G-protein-gated inwardly rectifying K+ current (GIRK) in atrial and sino-atrial node myocytes. We denote this current I(K(S-1-P).) A similar GIRK, which is activated by acetylcholine (ACh) and denoted I(K(ACh)), is expressed in atrium. It shortens the action potential duration (APD) and reduces the effective refractory period (ERP). We have examined the effect of S-1-P on APD in guinea pig atrial myocytes by characterizing the rectification properties of I(K(S-1-P)) and evaluating whether I(K(S-1-P)) and I(K(ACh)) exhibit convergence/occlusion. METHODS: Membrane potential and K+ currents were recorded from guinea pig atrial myocytes. Inwardly rectifying K+ currents were recorded using a ramp voltage clamp waveform between +30 to -130 mV from a holding potential of -7 mV. Agonist-induced current changes were obtained by subtracting the control current. RESULTS: S-1-P (1 and 10 nM) altered both passive and active properties of atrial myocytes. S-1-P increased the threshold current for excitation and decreased the time constant of the subthreshold electrotonic potentials. In addition, both APD50 and APD90 were decreased substantially. Voltage clamp analysis showed that the outward conductance of I(K(IR)) (G(K(IR)out)) was 134.8+/-11.3 pS pF(-1) (n = 19) in S-1-P (100 nM), and 207.0+/-19.6 pS pF(-1) (n = 18) in ACh (10 microM). The ratio of G(K(IR)out):G(K(IR)in) was about 0.7 for both S-1-P and ACh. The EC50 values for the activation of G(K(IR)out) and G(K(IR)in) by S-1-P were 1.6 and 1.3 nM, respectively. Addition of S-1-P (100 nM) after the effect of ACh (10 microM) had developed fully caused very little additional change. CONCLUSION: I(K(S-1-P)) is carried by weakly inwardly-rectifying K+ channels that are the same as those activated by ACh. This K+ current can markedly shorten APD in guinea pig atrial myocytes. This effect would be expected to increase the incidence of atrial rhythm disturbances.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Lisofosfolípidos/farmacología , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Esfingosina/análogos & derivados , Acetilcolina/metabolismo , Acetilcolina/farmacología , Adenosina Difosfato/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Cobayas , Atrios Cardíacos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Esfingosina/farmacología , Estimulación Química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...