Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404225, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38970527

RESUMEN

Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), ß-cyclodextrin (ß-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with ß-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.

2.
ACS Appl Mater Interfaces ; 16(28): 36002-36016, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954606

RESUMEN

The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Animales , Ratones , Células 3T3 NIH , Hidrogeles/química , Ratas , Humanos , Polímeros/química , Conductividad Eléctrica , Adhesivos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Acrilamidas/química , Ratas Sprague-Dawley
3.
ACS Appl Mater Interfaces ; 15(12): 15260-15268, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36920076

RESUMEN

Bioorthogonal activation of pro-dyes and prodrugs using transition-metal catalysts (TMCs) provides a promising strategy for imaging and therapeutic applications. TMCs can be loaded into polymeric nanoparticles through hydrophobic encapsulation to generate polymeric nanocatalysts with enhanced solubility and stability. However, biomedical use of these nanostructures faces challenges due to unwanted tissue accumulation of nonbiodegradable nanomaterials and cytotoxicity of heavy-metal catalysts. We report here the creation of fully biodegradable nanocatalysts based on an engineered FDA-approved polymer and the naturally existing catalyst hemin. Stable nanocatalysts were generated through kinetic stabilization using flash nanoprecipitation. The therapeutic potential of these nanocatalysts was demonstrated through effective treatment of bacterial biofilms through the bioorthogonal activation of a pro-antibiotic.


Asunto(s)
Nanopartículas , Nanoestructuras , Elementos de Transición , Polímeros/química , Nanopartículas/química , Elementos de Transición/química , Antibacterianos/farmacología
4.
ACS Appl Mater Interfaces ; 13(34): 40325-40331, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34416106

RESUMEN

Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil). These X-NEs exhibited effective penetration and killing of biofilms formed by pathogenic bacteria. Biofilm-fibroblast coculture models demonstrate that X-NEs selectively eliminate bacteria without harming mammalian cells, making them promising candidates for antibiofilm therapeutics.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cimenos/farmacología , Portadores de Fármacos/química , Emulsiones/química , Poliésteres/química , Animales , Portadores de Fármacos/toxicidad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Emulsiones/toxicidad , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Poliésteres/toxicidad
5.
Bioconjug Chem ; 31(9): 2116-2124, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32786374

RESUMEN

Macroporous cryogels that are amenable to facile functionalization are attractive platforms for biomolecular immobilization, a vital step for fabrication of scaffolds necessary for areas like tissue engineering and diagnostic sensing. In this work, thiol-reactive porous cryogels are obtained via photopolymerization of a furan-protected maleimide-containing poly(ethylene glycol) (PEG)-based methacrylate (PEGFuMaMA) monomer. A series of cryogels are prepared using varying amounts of the masked hydrophilic PEGFuMaMA monomer, along with poly(ethylene glycol) methyl ether methacrylate and poly(ethylene glycol) dimethacrylate, a hydrophilic monomer and cross-linker, respectively, in the presence of a photoinitiator. Subsequent activation to the thiol-reactive form of the furan-protected maleimide groups is performed through the retro Diels-Alder reaction. As a demonstration of direct protein immobilization, bovine serum albumin is immobilized onto the cryogels. Furthermore, ligand-directed immobilization of proteins is achieved by first attaching mannose- or biotin-thiol onto the maleimide-containing platforms, followed by ligand-directed immobilization of concanavalin A or streptavidin, respectively. Additionally, we demonstrate that the extent of immobilized proteins can be controlled by varying the amount of thiol-reactive maleimide groups present in the cryogel matrix. Compared to traditional hydrogels, cryogels demonstrate enhanced protein immobilization/detection. Additionally, it is concluded that utilization of a longer linker, distancing the thiol-reactive maleimide group from the gel scaffold, considerably increases protein immobilization. It can be envisioned that the facile fabrication, conjugation, and control over the extent of functionalization of these cryogels will make these materials desirable scaffolds for numerous biomedical applications.


Asunto(s)
Criogeles/química , Proteínas Inmovilizadas/química , Metacrilatos/química , Polietilenglicoles/química , Albúmina Sérica Bovina/química , Materiales Inteligentes/química , Compuestos de Sulfhidrilo/química , Animales , Bovinos , Química Clic , Criogeles/síntesis química , Reacción de Cicloadición , Maleimidas/síntesis química , Maleimidas/química , Metacrilatos/síntesis química , Polietilenglicoles/síntesis química , Porosidad , Materiales Inteligentes/síntesis química
6.
Chem Rec ; 18(6): 570-586, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29286198

RESUMEN

Functional polymers are widely employed in various areas of biomedical sciences. In order to tailor them for desired applications, facile and efficient functionalization of these polymeric materials under mild and benign conditions is important. Polymers containing reactive maleimide groups can be employed for such applications since they provide an excellent handle for conjugation of thiol- and diene-containing molecules and biomolecules. Until recently, fabrication of maleimide containing polymeric materials has been challenging due to the interference from the highly reactive double bond. A Diels-Alder/retro Diels-Alder reaction sequence based strategy to transiently mask the maleimide group provides access to such polymeric materials. In this personal account, we summarize contributions from our group towards the fabrication and functionalization of maleimide-containing polymeric materials over the past decade.

7.
ACS Appl Mater Interfaces ; 9(39): 34194-34203, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28905618

RESUMEN

Materials based on reduced graphene oxide (rGO) have shown to be amenable to noncovalent functionalization through hydrophobic interactions. The scaffold, however, does not provide sufficient covalent linkage given the low number of reactive carboxyl and alcohol groups typically available on the rGO. The integration of clickable groups, particularly the ones that can undergo efficient conjugation without any metal catalyst, would allow facile functionalization of these materials. This study reports on the noncovalent association of a maleimide-containing catechol (dopa-MAL) surface anchor onto the rGO. Thiol-maleimide chemistry allows thereafter the facile attachment of thiol-containing molecules under ambient metal-free conditions. Although the attachment of glutathione and 6-(ferrocenyl)hexanethiol was used as model thiols, the attachment of a cancer cell targeting cyclic peptide, c(RGDfC), opened the possibility of using the dopa-MAL-modified rGO as a targeted drug delivery system for doxorubicin (DOX). Although free DOX showed to be more effective at killing the human cervical cancer cells (HeLa) over human breast adenocarcinoma cancer cells (MDA-MB-231), the DOX-loaded rGO/dopa-MAL-c (RGDfC) nanostructure showed an opposite effect being notably more effective at targeting and killing the MDA-MB-231 cells. The effect is enhanced upon laser irradiation for 10 min at 2 W cm-2. The facile fabrication and functionalization to readily obtain a functional material in a modular fashion make this clickable-rGO construct an attractive platform for various applications.


Asunto(s)
Grafito/química , Sistemas de Liberación de Medicamentos , Humanos , Maleimidas , Compuestos de Sulfhidrilo
8.
J Colloid Interface Sci ; 507: 360-369, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28806655

RESUMEN

The formation of composites of reduced graphene oxide (rGO) and magnetic nanoparticles (MP) has flourished in recent years as they combine the advantages of both nanomaterials. Most of these composite materials are prepared by in situ formation of MP onto rGO or by the post-adsorption onto rGO. We report here on a simple and highly controlled method for the fabrication of different magnetic 3D rGO-loaded hydrogels. Cellulose bound magnetic nanoparticles (MP@cellulose) were synthesized by chemical co-precipitation and loaded together with rGO into poly(ethylene glycol) dimethacrylate based hydrogels during their fabrication using photo-polymerization. The magnetic rGO-loaded hydrogels proved to be highly adaptable to different applications. The as-formed composites allowed for efficient dye removal with an adsorption capacity of 111.9±4mgg-1 in the case of methylene blue (MB). Integration of poly(ethyleneimine) (PEI) allowed for the selective capturing of Cr6+ ions with an adsorption capacity of 313±12mgg-1. Most importantly, independent of the application, the magnetic rGO-loaded hydrogel can be regenerated without loss of its adsorption capacity.

9.
J Control Release ; 246: 164-173, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-27984105

RESUMEN

On-demand delivery of therapeutics plays an essential role in simplifying and improving patient care. The high loading capacity of reduced graphene oxide (rGO) for drugs has made this matrix of particular interest for its hybridization with therapeutics. In this work, we describe the formulation of rGO impregnated poly(ethylene glycol) dimethacrylate based hydrogels (PEGDMA-rGO) and their efficient loading with insulin. Near-infrared (NIR) light induced heating of the PEGDMA-rGO hydrogels allows for highly efficient insulin release. Most importantly, we validate that the NIR irradiation of the hydrogel has no effect on the biological and metabolic activities of the released insulin. The ease of insulin loading/reloading makes this photothermally triggered release strategy of interest for diabetic patients. Additionally, the rGO-based protein releasing platform fabricated here can be expanded towards 'on demand' release of various other therapeutically relevant biomolecules.


Asunto(s)
Preparaciones de Acción Retardada/química , Grafito/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Administración Cutánea , Animales , Células CACO-2 , Células Hep G2 , Calor , Humanos , Hipoglucemiantes/farmacocinética , Insulina/farmacocinética , Luz , Metacrilatos/química , Oxidación-Reducción , Polietilenglicoles/química , Absorción Cutánea , Porcinos
10.
ACS Appl Mater Interfaces ; 8(30): 19813-26, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27406320

RESUMEN

Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations.


Asunto(s)
Diagnóstico por Imagen/métodos , Nanopartículas de Magnetita/química , Alquinos/química , Azidas/química , Línea Celular Tumoral , Humanos , Polimerizacion , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA