Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Int J Biol Macromol ; : 132676, 2024 May 27.
Article En | MEDLINE | ID: mdl-38821805

Low bioavailability of phenolic compounds (phenolics) results in low in vivo bioactivity, thus their co-encapsulation could enhance potential health benefits. In this study, reconstitutable nanoliposomes loaded with phenolics varying in solubility were fabricated using spray drying after stabilized by chitosan (CH) or whey protein (WP). The physicochemical properties, biocompatibility, digestive fate, and bioactivity retention of phenolics in different forms were investigated. The surface charge of nanoliposomes (NL) shifted from -18.7 mV to positive due to conjugation with cationic CH (53.1 mV) and WP (14 mV) after spray drying while it was -26.6 mV for only spray-dried phenolics (SDP). Encapsulation efficiency of the tested phenolics ranged between 64.7 % and 95.1 %. Simulated gastrointestinal digestion/Caco-2 cell model was used to estimate the digestive fate of the phenolics yielding up to 3-fold higher bioaccessibility for encapsulated phenolics compared to their native form, combined or individually. However, the cellular uptake or transepithelial transport of phenolics did not differ significantly among formulations, except trans-resveratrol in WP-NL. On the contrary, the suppressive effect of phenolics on fatty acid induced hepatocellular lipid accumulation was strongly dependent on the encapsulation method, no activity was retained by SDP. These findings suggested that reconstitutable nanoliposomes can improve the absorption of phenolics by facilitating their bioaccessibility and thermal and/or processing stability during spray drying.

2.
ACS Omega ; 9(17): 19451-19460, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708234

Objective of this study was to design a formula of a sourdough pastry snack by adding starter inoculum into the formulation which was obtained by the fermentation process through beetroot (Beta vulgaris) puree with black-eyed pea (Vigna unguiculata) and fava bean (Vicia faba). With this development process, it was aimed to review the functional impact of legumes as gluten replacement and emphasize the importance regarding physical and sensory attributes in a pastry snack product. First, a starter inoculum was developed based on modification of the shalgam fermentation process with legumes. An experimental design suggested by the response surface methodology was used to optimize its microbial properties and level of antioxidants with the factors of amounts of beetroot puree, fava bean/black-eyed pea ratio, and fermentation time. In the second part, this starter inoculum was mixed with fava bean flour to obtain a sourdough pastry snack (FBS) with improved physical and sensory attributes and compared to the wheat control sourdough (WCS) pastry snack after the baking process. According to the optimization results to produce starter inoculum with the optimum results of lactic acid bacteria 9.55 log cfu/mL, the level of antioxidant activity 91.86 µM TE/mL, and total yeast level 6.96 log cfu/mL; 75 mL of beetroot puree, 100% for fava bean, and fermentation for 24 h were obtained. Compared to WCS, FBS has approximately 16% higher hardness values. Also, a significant difference was observed for stiffness and springiness among samples. The retention of moisture was higher in the first 4 days following the storage for 8 days; the moisture content continuously decreased with the final moisture content of 12.6%. When compared with the results of textural profile analysis in terms of hardness, stiffness, and springiness, sensory results were correlated. Comparing the overall acceptability of the FBS to WCS, FBS was from moderate to higher scores, which indicated that it could be a promising alternative to chemically developed snack products and a preferred product for people suffering from celiac disease and other gluten intolerances.

4.
Food Res Int ; 173(Pt 1): 113259, 2023 11.
Article En | MEDLINE | ID: mdl-37803572

In this study, a meat analogue formulation prepared using different protein sources as a printable ink for 3D printers and fortified with three different mushroom cultivars (reishi, Ganoderma lucidum (GL); saffron milk-cap, Lactarius deliciosus (LD); and oyster, Pleurotus ostreatus (PO)). 3D printing performance of the prepared inks was evaluated by factorial design in terms of nozzle height, printing speed, and flow compensation. New methods of maximum layer height and reprintability of plant-based meat analogues were conducted for the first time. Inks were characterized by analyzing rheological properties, microstructure, color characteristics, texture profile, cooking loss, amino acid content, and sensory evaluation. Results showed that the nozzle height and printing speed were found to be most effective on accuracy of prints and smoothness of layers. All inks (C, GL, LD and PO) represented shear-thinning and gel-like viscoelastic behavior (G' > G″) with predominant elasticity (tan δ < 1). Therefore they were suited for 3D printing and possessed supporting the following layers for additive manufacturing as well as meeting the criteria for a stable structure. Meat analogue was printed successfully without perceived defects in all formulations, except the GL was looking linty. LD and PO inks brought the advantage of recycling as a result of their re-printability whereas GL could not. Moreover, mushroom fortification reduced hardness, stiffness, springiness, and chewiness properties of the meat analogues whereas it increased the juiciness with reasonable overall acceptance. Mushroom fortification also enhanced the nutritional value and improved release of umami amino acids. The findings of the study demonstrated that mushrooms could be a functional and nutritious candidate for 3D printable plant-based meat analogues.


Agaricales , Pleurotus , Humans , Vegans , Cooking , Meat
6.
J Food Sci Technol ; 60(10): 2628-2638, 2023 Oct.
Article En | MEDLINE | ID: mdl-37599846

This manuscript reveals the effect of the emulsification step on the black carrot extract (BCE) stabilization by potato protein isolate (PPI)-citrus pectin (CP) coacervates. The effect of core-to-wall ratio and concentration of wall material were also investigated. This was the first attempt to compare the characteristics of emulsified core particles (ECP) and non-emulsified core particles (NECP) coated with complex coacervates. Potato protein was used as an encapsulating agent by complex coacervation for the first time, and it showed excellent characteristics for the encapsulation. Non-hygroscopic particles were produced with emulsification while most of NECPs were slightly hygroscopic. The mean particle diameter of powders ranged from 65.05 to 152.47 µm which is suitable with SEM micrographs. ECPs showed lower particle size values with increased wall concentration at the constant core-to-wall ratio. Encapsulation efficiency (EE) increased, and anthocyanin retention (AR) decreased when emulsification was included. EE of NECP and ECP was between 69.26-82.84% and 85.48-90.15% while AR was between 79.08-102.16% and 53.90-83.37%, respectively. FT-IR and ζ-potential values proved the complexation between PPI and CP in ECPs as well as the interaction of PP, CP, and BCE in NECPs. DSC thermograms proved the success of the encapsulation procedure and thermo-stability of the BCE-loaded particles. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05787-z.

7.
ACS Omega ; 8(26): 23782-23790, 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37426239

Sour cherry (Prunus cerasus L.) seeds are obtained as byproducts of the processing of sour cherries into processed foods. Sour cherry kernel oil (SCKO) contains n-3 PUFAs, which may provide an alternative to marine food products. In this study, SCKO was encapsulated by complex coacervates, and the characterization and in vitro bioaccessibility of encapsulated SCKO were investigated. Complex coacervates were prepared by whey protein concentrate (WPC) in combination with two different wall materials, maltodextrin (MD) and trehalose (TH). Gum Arabic (GA) was added to the final coacervate formulations to maintain droplet stability in the liquid phase. The oxidative stability of encapsulated SCKO was improved by drying on complex coacervate dispersions via freeze-drying and spray-drying. The optimum encapsulation efficiency (EE) was obtained for the sample 1% SCKO encapsulated with 3:1 MD/WPC ratio, followed by the 3:1 TH/WPC mixture containing 2% oil, while the sample with 4:1 TH/WPC containing 2% oil had the lowest EE. In comparison with freeze-dried coacervates containing 1% SCKO, spray-dried ones demonstrated higher EE and improved oxidative stability. It was also shown that TH could be a good alternative to MD when preparing complex coacervates with polysaccharide/protein networks.

8.
HardwareX ; 14: e00430, 2023 Jun.
Article En | MEDLINE | ID: mdl-37256080

The technique of additive manufacturing has increasing popularity in food research area as well as other scientific fields. However, 3D food printers are expensive options compared to 3D polymer printers. Scientists, that require laboratory scale production capacities, resemble the syringe-pump systems that available in open source and free hardware designs. Present study aimed to develop an exchangeable syringe-pump mechanism (SPM) to demonstrate transformation of conventional 3D printer from polymer to food extrusion. The SPM can print a variety of materials, including miscellaneous foods, pastes, hydrogels and even biopolymers. The complete mechanism relies mostly on 3D printed parts and costs approximately 72$. Therefore, it allows users to obtain a 3D food printer inexpensively and does not require large amounts of technical labor. The SPM uses big volume (60 ml) luer lock syringe and blunt tip needles for greater versatility and user-friendliness. It could also be extended with cooling mechanism, so that the proposed system gains unique attribute among its counterparts. Finally, a standard polymer-printing 3D-Printer was converted into a laboratory-scale food printer, and edible ink was successfully printed in the desired shape.

9.
Foods ; 12(4)2023 Feb 11.
Article En | MEDLINE | ID: mdl-36832856

The fruits of Rosa pimpinellifolia are rich sources of (poly)phenols, however they are underutilized due to the limited information available. The influence of the pressure, temperature, and co-solvent concentration (aqueous ethanol) of the supercritical carbon dioxide extraction (SCO2-aqEtOH) on the extraction yield, total phenolic-, total anthocyanin-, catechin-, cyanidin-3-O-glucoside contents, and total antioxidant activity of black rosehip was investigated simultaneously. The maximum obtained total phenolic and total anthocyanin contents under the optimized extraction conditions (280 bar, 60 °C and 25% ethanol, v/v) were 76.58 ± 4.25 mg gallic acid equivalent and 10.89 ± 1.56 mg cyanidin-3-O-glucoside equivalent per g of the dry fruits, respectively. The optimal extract obtained by SCO2-aqEtOH was compared to two other extraction procedures: ultrasonication using ethanol as solvent (UA-EtOH) and pressurized hot water extraction (PH-H2O). The bioaccessibility and cellular metabolism of the phenolic compounds in the different black rosehip extracts were assessed using an in vitro digestion coupled with a human intestinal Caco-2 cell model. The in vitro digestive stability and cellular uptake of the phenolic compounds had no significant difference among the different extraction methods. The results of this study confirm the efficiency of SCO2-aqEtOH extraction for phenolic compounds and, in particular, for anthocyanins, and could be used to produce new functional food ingredients from black rosehip with high antioxidant power containing both hydrophilic and lipophilic compounds.

10.
ACS Omega ; 8(4): 4156-4164, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36743072

Isoelectrically precipitated chickpea protein isolate (CPI) and its combination with maltodextrin (MD) were investigated for the ability to form and stabilize cumin seed oil emulsions. Solubility, net surface charge, emulsion activity/stability indices, and creaming stability of CPI at a pH of 3.0-9.0 were evaluated. Optimum conditions for minimum cream separation were identified as: 0.19% CPI and 6.83% oil concentrations. Cumin (Cuminum cyminum L.) seed essential oil was microencapsulated within the CPI-MD matrix via spray drying. Effects of CPI-MD matrix formulation on the physicochemical characteristics and volatile composition of the microencapsules were investigated. CPI-MD matrices had positive effects on microcapsule properties such as relatively lower surface oil, higher encapsulation efficiency (EE), and oil retention. Approximately 86.6-96.4% oil retention and 90.9-98.4% EE were achieved. Optimum conditions for maximized oil retention (92.9%) and EE (98.6%) were identified as: 2.1% CPI, 14.8% essential oil, and 35% MD. GC-MS analysis of microcapsules was carried out to determine the changes in volatile composition during spray drying. Cymene, α-pinene, ß-pinene, sabinene, terpinene, terpineol, phellandrene, and cumin aldehyde were determined as the major components. Optimized design showed the highest EE and minimal changes in the volatile composition of cumin seed essential oil.

11.
Molecules ; 28(3)2023 Jan 22.
Article En | MEDLINE | ID: mdl-36770788

This study aimed to evaluate the biochemical composition and biological activity of propolis samples from different regions of Türkiye to characterize and classify 24 Anatolian propolis samples according to their geographical origin. Chemometric techniques, namely, principal component analysis (PCA) and a hierarchical clustering algorithm (HCA), were applied for the first time to all data, including antioxidant capacity, individual phenolic constituents, and the antimicrobial activity of propolis to reveal the possible clustering of Anatolian propolis samples according to their geographical origin. As a result, the total phenolic content (TPC) of the propolis samples varied from 16.73 to 125.83 mg gallic acid equivalent per gram (GAE/g) sample, while the number of total flavonoids varied from 57.98 to 327.38 mg quercetin equivalent per gram (QE/g) sample. The identified constituents of propolis were phenolic/aromatic acids (chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, and trans-cinnamic acid), phenolic aldehyde (vanillin), and flavonoids (pinocembrin, kaempferol, pinobanksin, and apigenin). This study has shown that the application of the PCA chemometric method to the biochemical composition and biological activity of propolis allows for the successful clustering of Anatolian propolis samples from different regions of Türkiye, except for samples from the Black Sea region.


Anti-Infective Agents , Propolis , Propolis/chemistry , Antioxidants/chemistry , Principal Component Analysis , Turkey , Phenols/chemistry , Flavonoids/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Cluster Analysis
12.
Z Naturforsch C J Biosci ; 78(7-8): 261-269, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-36814174

In this study, the fatty acid, carbohydrate, and mineral profiles and proximate composition of Halopteris scoparia, Padina pavonica, Zanardinia typus, Cladostephus spongiosum, Sargassum vulgare, and Sargassum acinarium brown macroalgae collected from Türkiye seas were determined. According to the results, the ash and total carbohydrate contents of all macroalgae ranged from 20.79 to 53.49% in dry weight (dw) and from 15.32 to 55.13% dw, respectively. Their protein, lipid and crude fiber contents changed between 4.22 and 9.89% dw, 0.25 and 0.90% dw, and 12.28 and 16.01% dw, respectively. Palmitic acid (29.36-48.55% dw) and oleic acid (8.92-20.92% dw) were at the highest levels in all brown macroalgae. In addition, they included prominent levels of saturated fatty acids (51.87-69.56% dw of total fatty acid content). Magnesium (6.97-18.78 mg/kg dw), potassium (1.34-3.78 mg/kg dw), iron (1.27-8.24 mg/kg dw), and manganese (63.10-252.23 µg/kg dw) were found to be the major minerals. The main soluble carbohydrates of macroalgae were found to be mannitol (1149.99-8676.31 mg/kg dw), glucose (368.78-1305.59 mg/kg dw), myo-inositol (225.96-956.78 mg/kg dw), fructose (137.05-689.21 mg/kg dw), and sucrose (189.55-328.06 mg/kg dw). This study revealed that brown macroalgae are particularly rich in potassium, magnesium, iron, manganese, and zinc and they may have potential for use in the food industry.


Phaeophyceae , Seaweed , Fatty Acids/metabolism , Seaweed/metabolism , Manganese , Magnesium , Minerals/analysis , Carbohydrates , Iron/metabolism , Potassium/metabolism
13.
ACS Omega ; 8(1): 1486-1495, 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36643507

This study examined the amino-acid profile, secondary structure, and physicochemical and functional properties of proteins isolated from Anatolian chickpea landraces. Secondary objective of the study was to determine whether a relationship exists between the amino-acid composition and physicochemical and functional properties. Aspartic acid and glutamic acid were the dominant amino acids, while the isolates were deficient in methionine. Secondary structures were determined by Fourier transform infrared spectroscopy, where the ß-sheet was shown to be dominant. The denaturation temperature of the isolates was between 87 and 145 °C, and the highest net surface charge (≃28.6 mV) and solubility (∼95.0%) were observed at pH 9.0-10.0. The isolates' water-holding capacity varied between 2.1 and 2.7 g water/g protein, whereas their oil-holding capacity ranged between 3.4 and 4.4 g oil/g protein. Emulsion capacity, emulsifying activity, and the stability indices of isolates were found to be between 401.2 and 469.1 g oil/g protein, 14.5 and 25.7 m2/g, and 45.7 and 146.9 min, respectively. Isolates of Hisar and Erzincan chickpeas exhibited good emulsifying properties. The Yasa isolate had a relatively high hydrophobic amino-acid content and delivered the best gelation performance. Overall, significant differences in the characteristics of proteins were observed among the different chickpea landraces studied.

14.
Z Naturforsch C J Biosci ; 78(1-2): 9-25, 2023 Jan 27.
Article En | MEDLINE | ID: mdl-36069757

Santalum genus belongs to the family of Santalaceae, widespread in India, Australia, Hawaii, Sri Lanka, and Indonesia, and valued as traditional medicine, rituals and modern bioactivities. Sandalwood is reported to possess a plethora of bioactive compounds such as essential oil and its components (α-santalol and ß-santalol), phenolic compounds and fatty acids. These bioactives play important role in contributing towards biological activities and health-promoting effects in humans. Pre-clinical and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic, and anticancer activities. Safety studies on sandalwood essential oil (EO) and its extracts have proven them as a safe ingredient to be utilized in health promotion. Phytoconstituents, bioactivities and traditional uses established sandalwood as one of the innovative materials for application in the pharma, food, and biomedical industry.


Oils, Volatile , Santalum , Humans , Santalum/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology
15.
ACS Omega ; 8(51): 48689-48703, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38162757

Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.

16.
Molecules ; 27(20)2022 Oct 11.
Article En | MEDLINE | ID: mdl-36296399

In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40-80 °C) and the solvent-to-solid ratio (X2: 10-40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247-380 nm and a zeta-potential of 15-45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9-8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements.


Catechin , Rosa , Polyphenols , Antioxidants/pharmacology , Antioxidants/analysis , Anthocyanins , Liposomes , Water , Phenols/analysis , Plant Extracts , Solvents/analysis , Glucosides
17.
Plants (Basel) ; 11(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35161362

Date palm (Phoenix dactylifera L.) trees are largely cultivated across the Algerian oases; they are principal sources of remuneration and the economic basis for residents of these areas. Date palm fruits are rich sources of essential nutrients, vitamins, minerals, and dietary fibers, with many potential health benefits, yet there are few studies on the chemical composition and biological properties of date palm seed oil. In this study, we present an in-depth characterization of the biochemical composition and antioxidant properties of date palm seed oil (DPSO) produced in Algeria. DPSOs of eight Algerian cultivars, Arechti, Degla-Baida, Deglet-Nour, Ghars, Haloua, Itima, Mech-Degla, and Tentbouchet, were investigated to determine their biochemical compositions and antioxidant properties. The results highlight the potential of DPSO as an alternative food and a natural resource, thanks to several important compounds having high antioxidant capacity. In particular, fatty acids and triacylglycerol (TAGs) analyses showed that oleic (42.74-50.19%), lauric (18.40-22.2%), and myristic (8.83-10.17%) were the major fatty acids, while 1-myristoyl 2-oleoyl 3-linoleoyl glycerol, 1-linolenoyl 2-oleoyl 3-linoleoyl glycerol, 1-2-linolenoyl 3-linoleoyl glycerol, and 1-linolenoyl 2-myristoyl 3-linoleoyl glycerol were the major TAGs. Biophenols and tocopherols analyses revealed the presence of important compounds, such as catechin (22.04-24.92 mg/kg), vanillin (10.67-23.98 mg/kg), and α-tocopherol (443.59 mg/kg), at high remarkable levels. Therefore, a comparison with the literature data concerning other seed oils, including olive oil, confirms that DPSO can be considered a high-quality oil, from a biochemical and biological point of view.

18.
Oxid Med Cell Longev ; 2022: 6025900, 2022.
Article En | MEDLINE | ID: mdl-35154569

The use of phytochemicals is gaining interest for the treatment of metabolic syndromes over the synthetic formulation of drugs. Senna is evolving as one of the important plants which have been vastly studied for its beneficial effects. Various parts of Senna species including the root, stem, leaves, and flower are found rich in numerous phytochemicals. In vitro, in vivo, and clinical experiments established that extracts from Senna plants have diverse beneficial effects by acting as a strong antioxidant and antimicrobial agent. In this review, Senna genus is comprehensively discussed in terms of its botanical characteristics, traditional use, geographic presence, and phytochemical profile. The bioactive compound richness contributes to the biological activity of Senna plant extracts. The review emphasizes on the in vivo and in vitro antioxidant and anti-infectious properties of the Senna plant. Preclinical studies confirmed the beneficial effects of the Senna plant extracts and its bioactive components in regard to the health-promoting activities. The safety, side effects, and therapeutic limitations of the Senna plant are also discussed in this review. Additional research is necessary to utilize the phenolic compounds towards its use as an alternative to pharmacological treatments and even as an ingredient in functional foods.


Anti-Infective Agents/adverse effects , Antioxidants/adverse effects , Phytochemicals/adverse effects , Plant Extracts/adverse effects , Plants, Medicinal/chemistry , Senna Plant/chemistry , Animals , Ethnopharmacology/methods , Humans , Medicine, Traditional/adverse effects , Phytotherapy/adverse effects , Plant Components, Aerial/chemistry , Plant Roots/chemistry
19.
Oxid Med Cell Longev ; 2022: 2041769, 2022.
Article En | MEDLINE | ID: mdl-36824615

The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.


Alkaloids , Papaver , Papaver/chemistry , Anthocyanins , Alkaloids/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Medicine, Traditional
20.
Oxid Med Cell Longev ; 2021: 1131280, 2021.
Article En | MEDLINE | ID: mdl-34471461

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, where social and communication deficits and repetitive behaviors are present. Plant-derived bioactives have shown promising results in the treatment of autism. In this sense, this review is aimed at providing a careful view on the use of plant-derived bioactive molecules for the treatment of autism. Among the plethora of bioactives, curcumin, luteolin, and resveratrol have revealed excellent neuroprotective effects and can be effectively used in the treatment of neuropsychological disorders. However, the number of clinical trials is limited, and none of them have been approved for the treatment of autism or autism-related disorder. Further clinical studies are needed to effectively assess the real potential of such bioactive molecules.


Autism Spectrum Disorder/diet therapy , Plants/chemistry , Humans
...