Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Adv Biol (Weinh) ; 7(7): e2200327, 2023 07.
Article En | MEDLINE | ID: mdl-37300338

Extracellular vesicles (EVs) are emerging as biomarker candidates for early detection of prostate cancer. Studies compare EV-microRNA (miRNA) expression in individuals with prostate cancer (PCa) with cancer-free samples for diagnostic purposes. The aim of this study is to review miRNA signatures to investigate the overlap between miRNAs enriched in PCa tissue and miRNAs enriched in EVs isolated from subjects with PCa biofluids (i.e., urine, serum, and plasma). Signatures dysregulated in EVs from PCa biofluids and tissue are potentially associated with the primary tumor site and might be more indicative of PCa at an early stage. A systematic review of EV-derived miRNAs and a reanalysis of PCa tissue miRNA sequencing data for comparison is presented. Articles in the literature are screened for validated miRNA dysregulation in PCa and compared with TCGA primary PCa tumor data using DESeq2. This resulted in 190 dysregulated miRNAs being identified. Thirty-one eligible studies are identified, indicating 39 dysregulated EV-derived miRNAs. The top ten markers identified as significantly dysregulated in the PCa tissue dataset TCGA (e.g., miR-30b-3p, miR-210-3p, miR-126-3p, and miR-196a-5p) have a significant expression change in EVs with the same directionality in one or several statistically significant results. This analysis highlights several less frequently studied miRNAs in PCa literature.


Extracellular Vesicles , MicroRNAs , Prostatic Neoplasms , Male , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology
2.
Small ; 19(9): e2205519, 2023 03.
Article En | MEDLINE | ID: mdl-36642804

Exosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.


Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/metabolism , Spectrum Analysis, Raman/methods , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Cell Line
3.
Biosensors (Basel) ; 12(2)2022 Feb 09.
Article En | MEDLINE | ID: mdl-35200364

Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs' biochemical and biophysical properties is of great importance to map them to their parental cells and to better understand their functionalities. In this study, a novel frequency-dependent impedance measurement system has been developed to characterize EVs based on their unique dielectric properties. The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immobilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure their impedance at a wide frequency spectrum, aiming to analyze both their membrane and cytosolic charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different biochemical compositions, including liposomes synthesized with different lipid compositions, as well as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties. Moreover, EVs derived from the same parental cells but treated with different culture conditions were characterized to investigate the correlation of impedance changes with biochemical properties and functionality in terms of pro-inflammatory responses. The system also showed the ability to discriminate between EVs derived from different cellular origins as well as among size-sorted EVs harbored from the same cellular origin. This proof-of-concept approach is the first step towards utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of pathogenic EVs and other nanovesicles in the future.


Dielectric Spectroscopy , Extracellular Vesicles , Electric Impedance
4.
JACC CardioOncol ; 3(3): 428-440, 2021 Sep.
Article En | MEDLINE | ID: mdl-34604804

BACKGROUND: Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was evaluated in the SENECA trial, a Phase 1 National Heart, Lung, and Blood Institute-sponsored study, but the mechanisms underpinning efficacy in human tissue need clarification. OBJECTIVES: The purpose of this study was to perform an in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial-specific MSCs in treating doxorubicin (DOX) injury, using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iCMs) generated from SENECA patients. METHODS: Patient-specific iCMs were injured with 1 µmol/L DOX for 24 hours, treated with extracellular vesicles (EVs) from MSCs by either coculture or direct incubation and then assessed for viability and markers of improved cellular physiology. MSC-derived EVs were separated into large extracellular vesicles (L-EVs) (>200 nm) and small EVs (<220nm) using a novel filtration system. RESULTS: iCMs cocultured with MSCs in a transwell system demonstrated improved iCM viability and attenuated apoptosis. L-EVs but not small EVs recapitulated this therapeutic effect. L-EVs were found to be enriched in mitochondria, which were shown to be taken up by iCMs. iCMs treated with L-EVs demonstrated improved contractility, reactive oxygen species production, ATP production, and mitochondrial biogenesis. Inhibiting L-EV mitochondrial function with 1-methyl-4-phenylpyridinium attenuated efficacy. CONCLUSIONS: L-EV-mediated mitochondrial transfer mitigates DOX injury in patient-specific iCMs. Although SENECA was not designed to test MSC efficacy, consistent tendencies toward a positive effect were observed across endpoints. Our results suggest a mechanism by which MSCs may improve cardiovascular performance in AIC independent of regeneration, which could inform future trial design evaluating the therapeutic potential of MSCs.

5.
ACS Appl Mater Interfaces ; 13(35): 41445-41453, 2021 Sep 08.
Article En | MEDLINE | ID: mdl-34428374

Airborne transmission of exhaled virus can rapidly spread, thereby increasing disease progression from local incidents to pandemics. Due to the COVID-19 pandemic, states and local governments have enforced the use of protective masks in public and work areas to minimize the disease spread. Here, we have leveraged the function of protective face coverings toward COVID-19 diagnosis. We developed a user-friendly, affordable, and wearable collector. This noninvasive platform is integrated into protective masks toward collecting airborne virus in the exhaled breath over the wearing period. A viral sample was sprayed into the collector to model airborne dispersion, and then the enriched pathogen was extracted from the collector for further analytical evaluation. To validate this design, qualitative colorimetric loop-mediated isothermal amplification, quantitative reverse transcription polymerase chain reaction, and antibody-based dot blot assays were performed to detect the presence of SARS-CoV-2. We envision that this platform will facilitate sampling of current SARS-CoV-2 and is potentially broadly applicable to other airborne diseases for future emerging pandemics.


Breath Tests/instrumentation , COVID-19 Testing/instrumentation , Masks , SARS-CoV-2/isolation & purification , Air Microbiology , Antibodies, Viral/immunology , Breath Tests/methods , COVID-19 Testing/methods , Collodion/chemistry , Colorimetry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Polycarboxylate Cement/chemistry , Porosity , Proof of Concept Study , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/chemistry , Viral Proteins/analysis , Viral Proteins/immunology
6.
ACS Nano ; 14(7): 8518-8527, 2020 07 28.
Article En | MEDLINE | ID: mdl-32639713

Plasmonic sensors provide real-time and label-free detection of biotargets with unprecedented sensitivity and detection limit. However, they usually lack the ability to estimate the thickness of the target layer formed on top of the sensing surface. Here, we report a sensing modality based on reflection spectroscopy of a nanoplasmonic Fabry-Perot cavity array, which exhibits characteristics of both surface plasmon polaritons and localized plasmon resonances and outperforms its conventional counterparts by providing the thickness of the surface-adsorbed layers. Through numerical simulations, we demonstrate that the designed plasmonic surface resembles two entangled Fabry-Perot cavities excited from both ends. Performance of the device is evaluated by studying sensor response in the refractive index (RI) measurement of aqueous glycerol solutions and during formation of a surface-adsorbed layer consisting of protein (i.e., NeutrAvidin) molecules. By tracking the resonance wavelengths of the two modes of the nanoplasmonic surface, it is therefore possible to measure the thickness of a homogeneous adsorbed layer and RI of the background solution with precisions better than 4 nm and 0.0001 RI units. Using numerical simulations, we show that the thickness estimation algorithm can be extended for layers consisting of nanometric analytes adsorbed on an antibody-coated sensor surface. Furthermore, performance of the device has been evaluated to detect exosomes. By providing a thickness estimation for adsorbed layers and differentiating binding events from background RI variations, this device can potentially supersede conventional plasmonic sensors.

7.
Adv Mater ; 32(19): e1907160, 2020 May.
Article En | MEDLINE | ID: mdl-32201997

Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light-matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal-dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light-matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.


Biosensing Techniques/methods , Models, Molecular , Molecular Conformation , Surface Properties
8.
Nat Commun ; 10(1): 4087, 2019 09 09.
Article En | MEDLINE | ID: mdl-31501430

Untethered small actuators have various applications in multiple fields. However, existing small-scale actuators are very limited in their intractability with their surroundings, respond to only a single type of stimulus and are unable to achieve programmable structural changes under different stimuli. Here, we present a multiresponsive patternable actuator that can respond to humidity, temperature and light, via programmable structural changes. This capability is uniquely achieved by a fast and facile method that was used to fabricate a smart actuator with precise patterning on a graphene oxide film by hydrogel microstamping. The programmable actuator can mimic the claw of a hawk to grab a block, crawl like an inchworm, and twine around and grab the rachis of a flower based on their geometry. Similar to the large- and small-scale robots that are used to study locomotion mechanics, these small-scale actuators can be employed to study movement and biological and living organisms.


Biomimetics/instrumentation , Graphite/chemistry , Polymers/chemistry , Pyrroles/chemistry , Robotics
9.
Adv Drug Deliv Rev ; 103: 90-104, 2016 08 01.
Article En | MEDLINE | ID: mdl-27262924

HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.


Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Biosensing Techniques/methods , Biosensing Techniques/trends , HIV Infections/diagnosis , HIV Infections/therapy , HIV-1/isolation & purification , HIV Infections/virology , HIV-1/drug effects , Humans , Microfluidics/methods , Microfluidics/trends , Nanomedicine/methods , Nanomedicine/trends , Point-of-Care Systems/trends , Viral Load/drug effects
10.
Proc Natl Acad Sci U S A ; 112(32): E4354-63, 2015 Aug 11.
Article En | MEDLINE | ID: mdl-26195743

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.


Biosensing Techniques/instrumentation , Diagnostic Techniques and Procedures/instrumentation , Electricity , Nanostructures/chemistry , Cell Line, Tumor , Coinfection/diagnosis , Environment , Enzyme-Linked Immunosorbent Assay , Equipment Design , Humans , Hydrogen-Ion Concentration , Limit of Detection , Microfluidics , Osmolar Concentration , Reproducibility of Results , Temperature
11.
Cytotechnology ; 66(1): 87-94, 2014 Jan.
Article En | MEDLINE | ID: mdl-23381026

Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 µg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 µg/ml and minimal fungicidal concentration, 62.5 µg/ml) and S. aureus (MIC, 31.25 µg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.

...