Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Bone Miner Res ; 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38477773

Environmental factors and genetic variation individually impact bone. However, it is not clear how these factors interact to influence peak bone mass accrual. Here we tested whether genetically programmed high bone formation driven by missense mutations in the Lrp5 gene (Lrp5A214V) altered the sensitivity of mice to an environment of inadequate dietary calcium (Ca) intake. Weanling male Lrp5A214V mice and wildtype littermates (control) were fed AIN-93G diets with 0.125%, 0.25%, 0.5% (reference, basal), or 1% Ca from weaning until 12 wks of age (i.e. during bone growth). Urinary Ca, serum Ca, and Ca regulatory hormones (PTH, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), bone parameters (µCT, ash), and renal/intestinal gene expression were analyzed. As expected, low dietary Ca intake negatively impacted bones and Lrp5A214V mice had higher bone mass and ash content. Although bones of Lrp5A214V mice have more matrix to mineralize, their bones were not more susceptible to low dietary Ca intake. In control mice, low dietary Ca intake exerted expected effects on serum Ca (decreased), PTH (increased), and 1,25(OH)2D3 (increased) as well as their downstream actions (i.e. reducing urinary Ca, increasing markers of intestinal Ca absorption). In contrast, Lrp5A214V mice had elevated serum Ca with a normal PTH response but a blunted 1,25(OH)2D3 response to low dietary Ca that was reflected in the renal 1,25(OH)2D3 producing/degrading enzymes, Cyp27b1 and Cyp24a1. Despite elevated serum Ca in Lrp5A214V mice, urinary Ca was not elevated. Despite an abnormal serum 1,25(OH)2D3 response to low dietary Ca, intestinal markers of Ca absorption (Trpv6, S100g mRNA) were elevated in Lrp5A214V mice and responded to low Ca intake. Collectively, our data indicate that the Lrp5A214V mutation induces changes in Ca homeostasis that permit mice to retain more Ca and support their high bone mass phenotype.

2.
Bone ; 181: 117042, 2024 Apr.
Article En | MEDLINE | ID: mdl-38360197

This study investigated the efficacy of the two FDA-approved bone anabolic ligands of the parathyroid hormone receptor 1 (PTH1R), teriparatide or human parathyroid hormone 1-34 (PTH) and abaloparatide (ABL), to restoring skeletal health using a preclinical murine model of streptozotocin-induced T1-DM. Intermittent daily subcutaneous injections of equal molar doses (12 pmoles/g/day) of PTH (50 ng/g/day), ABL (47.5 ng/g/day), or vehicle, were administered for 28 days to 5-month-old C57Bl/6 J male mice with established T1-DM or control (C) mice. ABL was superior to PTH in increasing or restoring bone mass in control or T1-MD mice, respectively, which was associated with superior stimulation of trabecular and periosteal bone formation, upregulation of osteoclastic/osteoblastic gene expression, and increased circulating bone remodeling markers. Only ABL corrected the reduction in ultimate load, which is a measure of bone strength, induced by T1-DM, and it also increased energy to ultimate load. In addition, bones from T1-DM mice treated with PTH or ABL exhibited increased ultimate stress, a material index, compared to T1-DM mice administered with vehicle. And both PTH and ABL prevented the increased expression of the Wnt antagonist Sost/sclerostin displayed by T1-DM mice. Further, PTH and ABL increased to a similar extent the circulating bone resorption marker CTX and the bone formation marker P1NP in T1-DM after 2 weeks of treatment; however, only ABL sustained these increases after 4 weeks of treatment. We conclude that at equal molar doses, ABL is more effective than PTH in increasing bone mass and restoring the cortical and trabecular bone lost with T1-DM, due to higher and longer-lasting increases in bone remodeling.


Diabetes Mellitus, Type 1 , Teriparatide , Humans , Mice , Male , Animals , Infant, Newborn , Teriparatide/pharmacology , Teriparatide/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Bone Density/physiology , Parathyroid Hormone-Related Protein/pharmacology , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use
3.
Stem Cells ; 37(6): 766-778, 2019 06.
Article En | MEDLINE | ID: mdl-30786091

Aberrant wound healing presents as inappropriate or insufficient tissue formation. Using a model of musculoskeletal injury, we demonstrate that loss of transforming growth factor-ß activated kinase 1 (TAK1) signaling reduces inappropriate tissue formation (heterotopic ossification) through reduced cellular differentiation. Upon identifying increased proliferation with loss of TAK1 signaling, we considered a regenerative approach to address insufficient tissue production through coordinated inactivation of TAK1 to promote cellular proliferation, followed by reactivation to elicit differentiation and extracellular matrix production. Although the current regenerative medicine paradigm is centered on the effects of drug treatment ("drug on"), the impact of drug withdrawal ("drug off") implicit in these regimens is unknown. Because current TAK1 inhibitors are unable to phenocopy genetic Tak1 loss, we introduce the dual-inducible COmbinational Sequential Inversion ENgineering (COSIEN) mouse model. The COSIEN mouse model, which allows us to study the response to targeted drug treatment ("drug on") and subsequent withdrawal ("drug off") through genetic modification, was used here to inactivate and reactivate Tak1 with the purpose of augmenting tissue regeneration in a calvarial defect model. Our study reveals the importance of both the "drug on" (Cre-mediated inactivation) and "drug off" (Flp-mediated reactivation) states during regenerative therapy using a mouse model with broad utility to study targeted therapies for disease. Stem Cells 2019;37:766-778.


Bone Regeneration/drug effects , Fractures, Bone/genetics , MAP Kinase Kinase Kinases/genetics , Mesenchymal Stem Cells/enzymology , Osteoblasts/enzymology , Wound Healing/genetics , Animals , Bone Regeneration/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , DNA Nucleotidyltransferases/genetics , DNA Nucleotidyltransferases/metabolism , Female , Founder Effect , Fractures, Bone/drug therapy , Fractures, Bone/enzymology , Fractures, Bone/pathology , Gene Expression Regulation , Integrases/genetics , Integrases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/deficiency , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/drug effects , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Skull/drug effects , Skull/injuries , Skull/metabolism , Wound Healing/drug effects
...