Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38713502

We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.


Angiotensin-Converting Enzyme 2 , Evolution, Molecular , Polymorphism, Genetic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , Protein Binding , COVID-19/virology , COVID-19/genetics , Mutation , Molecular Dynamics Simulation
2.
J Phys Chem B ; 125(10): 2617-2626, 2021 03 18.
Article En | MEDLINE | ID: mdl-33687216

Earlier experiments suggest that the evolutionary information (conservation and coevolution) encoded in protein sequences is necessary and sufficient to specify the fold of a protein family. However, there is no computational work to quantify the effect of such evolutionary information on the folding process. Here we explore the role of early folding steps for sequences designed using coevolution and conservation through a combination of computational and experimental methods. We simulated a repertoire of native and designed WW domain sequences to analyze early local contact formation and found that the N-terminal ß-hairpin turn would not form correctly due to strong non-native local contacts in unfoldable sequences. Through a maximum likelihood approach, we identified five local contacts that play a critical role in folding, suggesting that a small subset of amino acid pairs can be used to solve the "needle in the haystack" problem to design foldable sequences. Thus, using the contact probability of those five local contacts that form during the early stage of folding, we built a classification model that predicts the foldability of a WW sequence with 81% accuracy. This classification model was used to redesign WW domain sequences that could not fold due to frustration and make them foldable by introducing a few mutations that led to the stabilization of these critical local contacts. The experimental analysis shows that a redesigned sequence folds and binds to polyproline peptides with a similar affinity as those observed for native WW domains. Overall, our analysis shows that evolutionary-designed sequences should not only satisfy the folding stability but also ensure a minimally frustrated folding landscape.


Protein Folding , Proteins , Amino Acid Sequence , Likelihood Functions , Models, Molecular , Proteins/genetics
3.
Curr Opin Struct Biol ; 66: 207-215, 2021 02.
Article En | MEDLINE | ID: mdl-33388636

While the function of a protein depends heavily on its ability to fold into a correct 3D structure, billions of years of evolution have tailored proteins from highly stable objects to flexible molecules as they adapted to environmental changes. Nature maintains the fine balance of protein folding and stability while still evolving towards new function through generations of fine-tuning necessary interactions with other proteins and small molecules. Here we focus on recent computational and experimental studies that shed light onto how evolution molds protein folding and the functional landscape from a conformational dynamics' perspective. Particularly, we explore the importance of dynamic allostery throughout protein evolution and discuss how the protein anisotropic network can give rise to allosteric and epistatic interactions.


Protein Folding , Proteins , Allosteric Regulation , Biophysical Phenomena , Protein Binding , Protein Stability , Proteins/genetics , Proteins/metabolism
...