Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(7): 7439-7451, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405481

RESUMEN

Porous Pd-based electrocatalysts are promising materials for alkaline direct ethanol fuel cells (ADEFCs) and ethanol sensors in the development of renewable energy and point-of-contact ethanol sensor test kits for drunk drivers. However, experimental and theoretical investigations of the interfacial interaction among Pd nanocrystals on supports (i.e., carbon black (CB), onion-like carbon (OLC), and CeO2/OLC) toward ADEFC and ethanol sensors are not yet reported. This is based on the preparation of Pd-CeO2/OLC nanocrystals by the sol-gel and impregnation methods. Evidently, the porous Pd-CeO2/OLC significantly increased membrane-free micro-3D-printed ADEFC performance with a high peak power density (Pmax = 27.15 mW cm-2) that is 1.38- and 7.58-times those of Pd/OLC (19.72 mW cm-2) and Pd/CB (3.59 mW cm-2), besides its excellent stability for 48 h. This is due to the excellent interfacial interaction among Pd, CeO2, and OLC, evidenced by density functional theory (DFT) simulations that showed a modulated Pd d-band center and facile active oxygenated species formation by the CeO2 needed for ethanol fuel cells. Similarly, Pd-CeO2/OLC gives excellent sensitivity (0.00024 mA mM-1) and limit of detection (LoD = 8.7 mM) for ethanol sensing and satisfactory recoveries (89-108%) in commercial alcoholic beverages (i.e., human serum, Amstel beer, and Nederberg Wine). This study shows the excellent possibility of utilizing Pd-CeO2/OLC for future applications in fuel cells and alcohol sensors.

2.
Adv Mater ; 36(2): e2307142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742099

RESUMEN

Solid-state electrolytes (SSEs) play a crucial role in developing lithium metal batteries (LMBs) with high safety and energy density. Exploring SSEs with excellent comprehensive performance is the key to achieving the practical application of LMBs. In this work, the great potential of Li0.95 Na0.05 FePO4 (LNFP) as an ideal SSE due to its enhanced ionic conductivity and reliable stability in contact with lithium metal anode is demonstrated. Moreover, LNFP-based composite solid electrolytes (CSEs) are prepared to further improve electronic insulation and interface stability. The CSE containing 50 wt% of LNFP (LNFP50) shows high ionic conductivity (3.58 × 10-4 S cm-1 at 25 °C) and good compatibility with Li metal anode and cathodes. Surprisingly, the LMB of Li|LNFP50|LiFePO4 cell at 0.5 C current density shows good cycling stability (151.5 mAh g-1 for 500 cycles, 96.5% capacity retention, and 99.3% Coulombic efficiency), and high-energy LMB of Li|LNFP50|Li[Ni0.8 Co0.1 Mn0.1 ]O2 cell maintains 80% capacity retention after 170 cycles, which are better than that with traditional liquid electrolytes (LEs). This investigation offers a new approach to commercializing SSEs with excellent comprehensive performance for high-performance LMBs.

3.
ACS Sens ; 8(7): 2761-2770, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37384904

RESUMEN

Human papillomavirus (HPV) is the causative agent for cervical cancer. Of the various types of HPV, the high-risk HPV-16 type is the most important antigenic high-risk HPV. In this work, the antigenic HPV-16 L1 peptide was immobilized on a glassy carbon electrode and used to detect several concentrations of the anti-HPV-16 L1 antibody, and vice versa. Two electrode platforms were used: onion-like carbon (OLC) and its polyacrylonitrile (OLC-PAN) composites. Both platforms gave a wide linear concentration range (1.95 fg/mL to 6.25 ng/mL), excellent sensitivity (>5.2 µA/log ([HPV-16 L1, fg/mL]), and extra-ordinarily low limit of detection (LoD) of 1.83 fg/mL (32.7 aM) and 0.61 fg/mL (10.9 aM) for OLC-PAN and OLC-based immunosensors, respectively. OLC-PAN modified with the HPV-16 L1 protein showed low LoD for the HPV-16 L1 antibody (2.54 fg/mL, i.e., 45.36 aM), proving its potential use for screening purposes. The specificity of detection was proven with the anti-ovalbumin antibody (anti-OVA) and native ovalbumin protein (OVA). An immobilized antigenic HPV-16 L1 peptide showed insignificant interaction with anti-OVA in contrast with the excellent interaction with anti-HPV-16 L1 antibody, thus proving high specificity. The application of the immunosensor as a potential point-of-care (PoC) diagnostic device was investigated with screen-printed carbon electrodes, which detected ultra-low (ca. 0.7 fg/mL ≈ 12.5 aM) and high (ca. 12 µg/mL ≈ 0.21 µM) concentrations. This study represents the lowest LoD reported for HPV-16 L1. It opens the door for further investigation with other electrode platforms and realization of PoC diagnostic devices for screening and testing of HPV biomarkers for cervical cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Virus del Papiloma Humano , Inmunoensayo , Biomarcadores , Carbono
4.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499359

RESUMEN

Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.


Asunto(s)
Medicina , Nanoestructuras , Electrólitos , Oxidación-Reducción , Tomografía de Emisión de Positrones
5.
Nanoscale Adv ; 4(23): 5044-5055, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504739

RESUMEN

Metal nanocrystal ornamented metal-organic frameworks (MOFs) are of particular interest in multidisciplinary applications; however, their electrocatalytic CO oxidation performance over wide pH ranges is not yet reported. Herein, Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) with abundant Ni-N x sites decorated with Pd nanocrystals (Pd/Ni-MOF/PC) were synthesized by microwave-irradiation (MW-I) followed by annealing at 900 °C and subsequent etching of Ni-MOF/C prior to Pd deposition. The fabrication mechanism comprises the generation of self-reduced reducing gases from triethylamine during the annealing and selective chemical etching of Ni, thereby facilitating the reduction of Ni-anchored MOF and Pd nanocrystal deposition with the aid of ethylene glycol and MW-I to yield Pd/Ni-N x enriched MOF/PC. The synthetic strategies endear the Pd/Ni-MOF/PC with unique physicochemical merits: abundant defects, interconnected pores, high electrical conductivity, high surface area, Ni-deficient but more active sites for Pd/Ni-N x in porous carbon nanosheets, and synergism. These merits endowed the CO oxidation activity and stability on Pd/Ni-MOF/PC substantially than those of Pd/Ni-MOF/C and Pd/C catalysts in wide pH conditions (i.e., KOH, HClO4, and NaHCO3). The CO oxidation activity study reveals the utilization of MOF/PC with metal nanocrystals (Pd/Ni) in CO oxidation catalysis.

6.
Small ; 18(42): e2203778, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36103609

RESUMEN

An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization-calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH-universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm-2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm-2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar-driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.

7.
Langmuir ; 38(36): 11109-11120, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36040806

RESUMEN

Rational synthesis of Co-ZIF-67 metal-organic framework (MOF)-derived carbon-supported metal nanoparticles is essential for various energy and environmental applications; however, their catalytic activity toward carbon monoxide (CO) oxidation in various electrolytes is not yet emphasized. Co-ZIF-67-derived hierarchical porous carbon nanosheet-supported Pd nanocrystals (Pd/ZIF-67/C) were prepared using a simple microwave-irradiation approach followed by carbonization and etching. Mechanistically, during microwave irradiation, triethyleneamine provides abundant reducing gases that promote the formation of Pd nanoparticles/Co-Nx in porous carbon nanosheets with the assistance of ethylene glycol and also form a multimodal pore size. The electrocatalytic CO oxidation activity and stability of Pd/ZIF-67/C outperformed those of commercial Pd/C and Pt/C catalysts by (4.2 and 4.4, 4.0 and 2.7, 3.59 and 2.7) times in 0.1 M HClO4, 0.1 M KOH, and 0.1 M NaHCO3, respectively, due to the catalytic properties of Pd besides the conductivity of Co-Nx active sites and delicate porous structures of ZIF-67. Notably, using Pd/ZIF-67/C results in a higher CO oxidation activity than Pd/C and Pt/C. This study may pave the way for using MOF-supported multi-metallic nanoparticles for CO oxidation electrocatalysis.

8.
Nanoscale ; 14(30): 10717-10737, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35861592

RESUMEN

Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.

9.
Sci China Mater ; 65(10): 2685-2693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668742

RESUMEN

Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical Co x Ni y Fe z P with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (η = 320 mV at 10 mA cm-2) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm-2) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by O under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s40843-022-2061-x.

10.
Chem Commun (Camb) ; 58(49): 6882-6885, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35621036

RESUMEN

Hierarchically fractal Co with highly exposed active (002) facets, possessing a higher work function and more moderate hydrogen adsorption free energy, has been synthesized via a template-free self-assembly method for the directed electron-transfer design of HER catalysts. It shows a great improvement in the HER activity in comparison with that of nanostructured Co.

11.
Front Chem ; 10: 839867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265587

RESUMEN

The durability and long-term applicability of catalysts are critical parameters for the commercialization and adoption of fuel cells. Even though a few studies have been conducted on hollow carbon spheres (HCSs) as supports for Pt in oxygen reduction reactions (ORR) catalysis, in-depth durability studies have not been conducted thus far. In this study, Pt/HCSs and Pt/nitrogen-doped HCSs (Pt/NHCSs) were prepared using a reflux deposition technique. Small Pt particles were formed with deposition on the outside of the shell and inside the pores of the shell. The new catalysts demonstrated high activity (>380 µA cm-2 and 240 mA g-1) surpassing the commercial Pt/C by more than 10%. The catalysts demonstrated excellent durability compared to a commercial Pt/C in load cycling, experiencing less than 50% changes in the mass-specific activity (MA) and surface area-specific activity (SA). In stop-start durability cycling, the new materials demonstrated high stability with more than 50% retention of electrochemical active surface areas (ECSAs). The results can be rationalised by the high BET surface areas coupled with an array of meso and micropores that led to Pt confinement. Further, pair distribution function (PDF) analysis of the catalysts confirmed that the nitrogen and oxygen functional groups, as well as the shell curvature/roughness provided defects and nucleation sites for the deposition of the small Pt nanoparticles. The balance between graphitic and diamond-like carbon was critical for the electronic conductivity and to provide strong Pt-support anchoring.

12.
13.
ACS Omega ; 7(51): 47892-47905, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591171

RESUMEN

This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (E ad = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (E ad = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of ∼55 to 392 µM, with high sensitivity (0.0315 µA/µM) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 µM, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.

14.
ACS Omega ; 6(39): 25562-25573, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632213

RESUMEN

This study examines the role of defects in structure-property relationships in spinel LiMn1.5Ni0.5O4 (LMNO) cathode materials, especially in terms of Mn3+ content, degree of disorder, and impurity phase, without the use of the traditional high-temperature annealing (≥700 °C used for making disordered LMNO). Two different phases of LMNO (i.e., highly P4332-ordered and highly Fd3̅m-disordered) have been prepared from two different ß-MnO2-δ precursors obtained from an argon-rich atmosphere (ß-MnO2-δ (Ar)) and a hydrogen-rich atmosphere [ß-MnO2-δ (H2)]. The LMNO samples and their corresponding ß-MnO2-δ precursors are thoroughly characterized using different techniques including high-resolution transmission electron microscopy, field-emission scanning electron microscopy, Raman spectroscopy, powder neutron diffraction, X-ray photoelectron spectroscopy, synchrotron X-ray diffraction, X-ray absorption near-edge spectroscopy, and electrochemistry. LMNO from ß-MnO2-δ (H2) exhibits higher defects (oxygen vacancy content) than the one from the ß-MnO2-δ (Ar). For the first time, defective ß-MnO2-δ has been adopted as precursors for LMNO cathode materials with controlled oxygen vacancy, disordered phase, Mn3+ content, and impurity contents without the need for conventional methods of doping with metal ions, high synthetic temperature, use of organic compounds, postannealing, microwave, or modification of the temperature-cooling profiles. The results show that the oxygen vacancy changes concurrently with the degree of disorder and Mn3+ content, and the best electrochemical performance is only obtained at 850 °C for LMNO-(Ar). The findings in this work present unique opportunities that allow the use of ß-MnO2-δ as viable precursors for manipulating the structure-property relationships in LMNO spinel materials for potential development of high-performance high-voltage lithium-ion batteries.

15.
Chemistry ; 27(57): 14142, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34590741

RESUMEN

Invited for the cover of this issue are Xiao-Yu Yang and co-workers at Wuhan University of Technology, Heinrich-Heine-Universität Düsseldorf, University of the Witwatersrand, and Ben-Gurion University of the Negev. The image depicts Ti vacancies in TiO2 as powerful drivers of photo- and photo-electrocatalytic seawater splitting for hydrogen production. Read the full text of the article at 10.1002/chem.202101817.

16.
Chemistry ; 27(57): 14202-14208, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379853

RESUMEN

Photodriven seawater splitting is considered to be one of the most promising techniques for sustainable hydrogen production. However, the high salinity of seawater would deactivate catalysts and consume the photogenerated carriers. Metal vacancies in metal oxide semiconductors are critical to directed electron transfer and high salinity resistance; they are thus desirable but remain a challenge. We demonstrate a facile controllable calcination approach to synthesize TiO2 nanofibers with rich Ti vacancies with excellent photo/electro performances and long-time stability in photodriven seawater splitting, including photocatalysis and photo-electrocatalysis. Experimental measurements and theoretical calculations reveal the formation of titanium vacancies, as well as unidirectional electron trap and superior H+ adsorption ability for efficient charge transfer and resistance to corrosion by seawater. Therefore, atomic-/nanoscale characteristics and mechanism have been proposed to clarify the generation of titanium vacancies and the corresponding interfacial electron transfer.

17.
Nano Lett ; 21(18): 7870-7878, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34318680

RESUMEN

Fractal Pt-based materials with hierarchical structures and high self-similarity have attracted more and more attention due to their bioinspiring maximum optimization of energy utilization and mass transfer. However, their high-efficiency design of the mass- and electron-transfer still remains to be a great challenge. Herein, fractal PtPdCu hollow sponges (denoted as PtPdCu-HS) facilitating both directed mass- and electron-transfer are presented. Such directed transfer effects greatly promote electrocatalytic activity, regarded as 3.9 times the mass activity, 7.3 times the specific activity, higher poison tolerance, and higher stability than commercial Pt/C for the methanol oxidation reaction (MOR). A new "directed mass- and electron-transfer" concept, characteristics, and mechanism are proposed at the micro/nanoscale to clarify the structural design and functional enhancement of fractal electrocatalyst. This work displays new possibilities for designing novel nanomaterials with high activity and superior stability toward electrocatalysis or other practical applications.


Asunto(s)
Electrones , Fractales , Catálisis , Transporte de Electrón , Oxidación-Reducción
18.
Electrocatalysis (N Y) ; 12(5): 595-604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122666

RESUMEN

This work investigates how bovine serum albumin (BSA), a commonly used protein in the fabrication of electrochemical immunosensors, can impact on the sensitivity of detection when integrated with antibody (Ab) pre-encapsulated with (i) insulating polyacrylonitrile (PAN) fibre (i.e., GCE-PAN-Ab-BSA immunosensor) or (ii) conducting PAN-grafted iron (II) phthalocyanine (FePc) (i.e., GCE-PAN@FePc-Ab-BSA immunosensor), using Vibrio cholerae toxin as a case study bioanalyte. Both immunosensors show different charge-transfer kinetics that strongly impact on their immunosensitive detection. From the electrochemical data, GCE-PAN-Ab-BSA is more insulating with the presence of BSA, while the GCE-PAN@FePc-Ab-BSA is more conducting with BSA. The CV of the GCE-PAN-Ab-BSA is dominated by radial diffusion process, while that of the GCE-PAN@FePc-Ab-BSA is planar diffusion process. The behaviour of GCE-PAN@FePc-Ab-BSA has been associated with the facile coordination of BSA and FePc that permits co-operative charge-transport of the redox probe, while that of the GCE-PAN-Ab-BSA is related to the interaction-induced PAN-BSA insulating state that suppresses charge-transport. As a consequence of these different interaction processes, GCE-PAN-Ab-BSA immunosensor provides higher electroanalytical performance for the detection of Vibrio cholerae toxin (with sensitivity of 16.12 Ω/log [VCT, g/mL] and limit of detection (LoD) of 3.20 × 10-13 g/mL compared to those of the GCE-PAN@FePc-Ab-BSA (4.16 Ω/log (VCT, g mL-1) and 2.00 × 10-12 g/mL). The study confirms the need for a thorough understanding of the physico-chemistries of the electrode platforms for the construction of immunosensors. Although this work is on immunosensors for cholera infection, it may well apply to other immunosensors.

19.
Chemistry ; 27(35): 9124-9128, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33788984

RESUMEN

Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.

20.
ACS Appl Energy Mater ; 4(2): 1763-1773, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33644701

RESUMEN

Controlling the porosity of carbon-based electrodes is key toward performance improvement of charge storage devices, e.g., supercapacitors, which deliver high power via fast charge/discharge of ions at the electrical double layer (EDL). Here, eco-friendly preparation of carbons with adaptable nanopores from polymers obtained via microwave-assisted cross-linking of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) is reported. The polymeric hydrogels possess porous and foam-like structures, giving excellent control of porosity at the precursor level, which are then subjected to activation at high temperatures of 700-900 °C to prepare carbons with a surface area of 1846 m2 g-1 and uniform distribution of micro-, meso-, and macropores. Then, graphene as an additive to hydrogel precursor improves the surface characteristics and elaborates porous texture, giving composite materials with a surface area of 3107 m2 g-1. These carbons show an interconnected porous structure and bimodal pore size distribution suitable for facile ionic transport. When implemented in symmetric supercapacitor configuration with aqueous 5 mol L-1 NaNO3 electrolyte, a capacitance of 163 F g-1 (per average mass of one electrode) and stable evolution of capacitance, coulombic, and energy efficiency during 10 000 galvanostatic charge/discharge up to 1.6 V at 1.0 A g-1 have been achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...