Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Pharmaceuticals (Basel) ; 16(6)2023 May 24.
Article En | MEDLINE | ID: mdl-37375729

Coamorphous salt in a 1:1 ratio prepared by ball milling from Fluvastatin sodium (FLV) and Pioglitazone hydrochloride (PGZ·HCl) can be selectively formed by neat grinding (NG). Furthermore, the salt-cocrystal continuum was preferably formed by employing liquid-assisted grinding (LAG) using ethanol (EtOH). Attempts to prepare the coamorphous salt starting from the salt-cocrystal continuum by NG were unsuccessful. Interestingly, through ball milling by NG or LAG, a great diversity of solid forms (PGZ·HCl-FLV 1:1) could be accessed: NG and hexane (coamorphous); ethyl acetate (physical mixture); EtOH (salt-cocrystal continuum); and water (which presents two Tg, indicating immiscibility of the components). An exploration was performed at different drug-to-drug ratios by NG. By differential scanning calorimetry (DSC), the presence of two endothermic events was observed in this screening: incongruous melting point (solidus) and excess of one of the components (liquidus), except in the 1:1 solid form. From these results, eutectic behavior was observed. Through the construction of a binary phase diagram, it was determined that the 1:1 molar ratio gives rise to the formation of the most stable coamorphous composition. Dissolution profile studies of these solid forms were carried out, specifically on pure FLV and the solid forms of PGZ⋅HCl-FLV (1:2; 1:4; and 1:6), together with the coamorphous 1:1 salt. By itself, pure FLV presented the highest Kint (13.6270 ± 0.8127 mg/cm2⋅min). On the other hand, the coamorphous 1:1 showed a very low Kint (0.0220 ± 0.0014 mg/cm2·min), indicating very fast recrystallization by the FLV, which avoids observing a sudden release of this drug in the solution. This same behavior was observed in the eutectic composition 1:2. In the other solid forms, the value of Kint increases along with the %w of FLV. From the mechanochemical point of view, ball milling by NG or LAG became an important synthetic tool since it allows obtaining a great variety of solid forms to explore the solid-state reactivity of the drug-drug solid-form PGZ HCl-FLV.

2.
Pharmaceutics ; 15(2)2023 Feb 13.
Article En | MEDLINE | ID: mdl-36839951

Ball-milling using neat grinding (NG) or liquid-assisted grinding (LAG) by varying the polarity of the solvents allowed access to various drug-drug solid forms of pioglitazone hydrochloride (PGZ·HCl) and rosuvastatin calcium (RSV). Using NG, the coamorphous form was formed from the reaction of pioglitazone hydrochloride (PGZ·HCl) and rosuvastatin calcium (RSV) in a 2:1 molar ratio. The formation of the expected coamorphous salt could not be corroborated by FT-IR, but DSC data showed that it was indeed a single-phase amorphous mixture. By varying the molar ratios of the reactants, either keeping PGZ·HCl constant and varying RSV or vice versa, another coamorphous form was obtained when a 1:1 molar ratio was employed. In the case of the other outcomes, it was observed that they were a mixture of solid forms coexisting simultaneously with the coamorphous forms (1:1 or 2:1) together with the drug that was in excess. When RSV was in excess, it was in an amorphous form. In the case of PGZ·HCl, it was found in a semicrystalline form. The intrinsic dissolution rates (IDRs) of the solid forms of PGZ·HCl-RSV in stoichiometric ratios (1:1, 2:1, 1:4, 6:1, and 1:10) were evaluated. Interestingly, a synchronized release of both drugs in the dissolution medium was observed. In the case of the release of RSV, there were no improvements in the dissolution profiles, because the acidic media caused the formation of degradation products, limiting any probable modification in the dissolution processes. However, the coamorphous 2:1 form exhibited an improvement of 1.03 times with respect to pure PGZ·HCl. It is proposed that the modification of the dissolution process of the coamorphous 2:1 form was limited by changes in the pH of the media as RSV consumes protons from the media due to degradation processes.

3.
PLoS One ; 17(9): e0274910, 2022.
Article En | MEDLINE | ID: mdl-36126080

It is well known that the presence of comorbidities and age-related health issues may hide biochemical and metabolic features triggered by SARS-CoV-2 infection and other diseases associated to hypoxia, as they are by themselves chronic inflammatory conditions that may potentially disturb metabolic homeostasis and thereby negatively impact on COVID-19 progression. To unveil the metabolic abnormalities inherent to hypoxemia caused by COVID-19, we here applied gas chromatography coupled to mass spectrometry to analyze the main metabolic changes exhibited by a population of male patients less than 50 years of age with mild/moderate and severe COVID-19 without pre-existing comorbidities known to predispose to life-threatening complications from this infection. Several differences in serum levels of particular metabolites between normal controls and patients with COVID-19 as well as between mild/moderate and severe COVID-19 were identified. These included increased glutamic acid and reduced glutamine, cystine, threonic acid, and proline levels. In particular, using the entire metabolomic fingerprint obtained, we observed that glutamine/glutamate metabolism was associated with disease severity as patients in the severe COVID-19 group presented the lowest and higher serum levels of these amino acids, respectively. These data highlight the hypoxia-derived metabolic alterations provoked by SARS-CoV-2 infection in the absence of pre-existing co-morbidities as well as the value of amino acid metabolism in determining reactive oxygen species recycling pathways, which when impaired may lead to increased oxidation of proteins and cell damage. They also provide insights on new supportive therapies for COVID-19 and other disorders that involve altered redox homeostasis and lower oxygen levels that may lead to better outcomes of disease severity.


COVID-19 , Glutamic Acid , Amino Acids/metabolism , Cystine/metabolism , Gas Chromatography-Mass Spectrometry , Glutamic Acid/metabolism , Glutamine/metabolism , Homeostasis , Humans , Hypoxia , Male , Oxidation-Reduction , Oxygen , Proline/metabolism , Reactive Oxygen Species , SARS-CoV-2
4.
Pharmaceutics ; 14(2)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35214133

Fluorination of pharmaceutical agents has afforded crucial modifications to their pharmacological profiles, leading to important advances in medicinal chemistry. On the other hand, metallodrugs are considered to be valuable candidates in the treatment of several diseases, albeit with the caveat that they may exhibit pharmacological disadvantages, such as poor water solubility, low bioavailability and short circulating time. To surmount these limitations, two approaches have been developed: one based on the design of novel metallodrug-delivering carriers and the other based on optimizing the structure of the ligands bound to the metal center. In this context, fluorination of the ligands may bring beneficial changes (physicochemical and biological) that can help to elude the aforementioned drawbacks. Thus, in this review, we discuss the use of fluorinated ligands in the design of metallodrugs that may exhibit potential anticancer activity.

5.
Inflamm Res ; 71(1): 131-140, 2022 Jan.
Article En | MEDLINE | ID: mdl-34850243

OBJECTIVES: The role of B cells in COVID-19, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Here, we describe the novel landscape of circulating double-negative (DN) CD27- IgD- B cells in COVID-19 patients, representing a group of atypical and neglected subpopulations of this cell lineage. METHODS: Using multiparametric flow cytometry, we determined DN B cell subset amounts from 91 COVID-19 patients, correlated those with cytokines, clinical and laboratory parameters, and segregated them by principal components analysis. RESULTS: We detected significant increments in the DN2 and DN3 B cell subsets, while we found a relevant decrease in the DN1 B cell subpopulation, according to disease severity and patient outcomes. These DN cell numbers also appeared to correlate with pro- or anti-inflammatory signatures, respectively, and contributed to the segregation of the patients into disease severity groups. CONCLUSION: This study provides insights into DN B cell subsets' potential role in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.


COVID-19/blood , COVID-19/immunology , Immunoglobulin D/blood , SARS-CoV-2 , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Adult , Aged , Aged, 80 and over , B-Lymphocytes/cytology , COVID-19/diagnosis , COVID-19/virology , Cell Lineage , Computational Biology , Disease Progression , Female , Humans , Male , Middle Aged , Principal Component Analysis , Prognosis , Respiration, Artificial , Severity of Illness Index , Young Adult
6.
Pharmaceutics ; 13(11)2021 Nov 14.
Article En | MEDLINE | ID: mdl-34834341

The mechanochemical synthesis of drug-drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug-drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy-energy dispersive X-ray spectroscopy analysis (SEM-EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.

7.
Molecules ; 26(14)2021 Jul 20.
Article En | MEDLINE | ID: mdl-34299651

Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a-f and 5a-f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.


Enzyme Inhibitors , Glycyrrhetinic Acid , Indoles , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pyrazoles , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
8.
Pharmaceutics ; 13(6)2021 May 25.
Article En | MEDLINE | ID: mdl-34070646

Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.

9.
Sci Rep ; 11(1): 6350, 2021 03 18.
Article En | MEDLINE | ID: mdl-33737694

We identified the main changes in serum metabolites associated with severe (n = 46) and mild (n = 19) COVID-19 patients by gas chromatography coupled to mass spectrometry. The modified metabolic profiles were associated to an altered amino acid catabolism in hypoxic conditions. Noteworthy, three α-hydroxyl acids of amino acid origin increased with disease severity and correlated with altered oxygen saturation levels and clinical markers of lung damage. We hypothesize that the enzymatic conversion of α-keto-acids to α- hydroxyl-acids helps to maintain NAD recycling in patients with altered oxygen levels, highlighting the potential relevance of amino acid supplementation during SARS-CoV-2 infection.


Amino Acids/metabolism , COVID-19/metabolism , Oxygen/metabolism , Adult , Case-Control Studies , Female , Homeostasis , Humans , Male , Metabolomics , Middle Aged , Mitochondria/metabolism
10.
Front Immunol ; 11: 611004, 2020.
Article En | MEDLINE | ID: mdl-33343585

Background: SARS-CoV-2 infection represents a global health problem that has affected millions of people. The fine host immune response and its association with the disease course have not yet been fully elucidated. Consequently, we analyze circulating B cell subsets and their possible relationship with COVID-19 features and severity. Methods: Using a multiparametric flow cytometric approach, we determined B cell subsets frequencies from 52 COVID-19 patients, grouped them by hierarchical cluster analysis, and correlated their values with clinical data. Results: The frequency of CD19+ B cells is increased in severe COVID-19 compared to mild cases. Specific subset frequencies such as transitional B cell subsets increase in mild/moderate cases but decrease with the severity of the disease. Memory B compartment decreased in severe and critical cases, and antibody-secreting cells are increased according to the severity of the disease. Other non-typical subsets such as double-negative B cells also showed significant changes according to disease severity. Globally, these differences allow us to identify severity-associated patient clusters with specific altered subsets. Finally, respiratory parameters, biomarkers of inflammation, and clinical scores exhibited correlations with some of these subpopulations. Conclusions: The severity of COVID-19 is accompanied by changes in the B cell subpopulations, either immature or terminally differentiated. Furthermore, the existing relationship of B cell subset frequencies with clinical and laboratory parameters suggest that these lymphocytes could serve as potential biomarkers and even active participants in the adaptive antiviral response mounted against SARS-CoV-2.


B-Lymphocyte Subsets , COVID-19 , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Female , Flow Cytometry , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
...