Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
RSC Adv ; 14(39): 28423-28454, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39247510

RESUMEN

This study presents the discovery of a new series of N-phenylpyrrolamide inhibitors of bacterial DNA gyrase with improved antibacterial activity. The most potent inhibitors had low nanomolar IC50 values against Escherichia coli DNA gyrase (IC50; 2-20 nM) and E. coli topoisomerase IV (22i, IC50 = 143 nM). Importantly, none of the compounds showed activity against human DNA topoisomerase IIα, indicating selectivity for bacterial targets. Among the tested compounds, 22e emerged as the most effective against Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 0.25 µg mL-1 against Staphylococcus aureus ATCC 29213 and MRSA, and 0.125 µg mL-1 against Enterococcus faecalis ATCC 29212. For Gram-negative bacteria, compounds 23b and 23c showed the greatest efficacy with MIC values ranging from 4 to 32 µg mL-1 against E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ATCC 17978 and A. baumannii ATCC 19606. Notably, compound 23b showed promising activity against the clinically relevant Gram-negative pathogen Klebsiella pneumoniae ATCC 10031, with an MIC of 0.0625 µg mL-1. Furthermore, compounds 23a and 23c exhibited significantly lower susceptibility to resistance development compared to novobiocin in S. aureus ATCC 29213 and K. pneumoniae ATCC 10031. Overall, the most promising compounds of this series showed excellent on-target potency, marking a significant improvement over previous N-phenylpyrrolamide inhibitors.

2.
Eur J Med Chem ; 278: 116823, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39236496

RESUMEN

In this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC50 values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes. All tested compounds show high selectivity towards the human isoform DNA topoisomerase IIα. Compounds 6a, 6d, 6e and 6f show MIC values between 0.031 and 0.0625 µg/mL against vancomycin-intermediate S. aureus (VISA) and Enterococcus faecalis strains. Compound 6g shows an inhibitory effect against the methicillin-resistant S. aureus strain (MRSA) with a MIC of 0.0625 µg/mL and against the E. faecalis strain with a MIC of 0.125 µg/mL. In a time-kill assay, compound 6d showed a dose-dependent bactericidal effect on the MRSA strain and achieved bactericidal activity at 8 × MIC after 8 h. The duration of the post-antibiotic effect (PAE) on the MRSA strain for compound 6d was 2 h, which corresponds to the PAE duration for ciprofloxacin. The compounds were not cytotoxic at effective concentrations, as determined in an MTS assay on the MCF-7 breast cancer cell line.


Asunto(s)
Antibacterianos , Girasa de ADN , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Girasa de ADN/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Enterococcus faecalis/efectos de los fármacos , Pirroles/farmacología , Pirroles/química , Pirroles/síntesis química , Amidas/farmacología , Amidas/química , Amidas/síntesis química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
3.
Eur J Med Chem ; 276: 116693, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053193

RESUMEN

New 2-pyrrolamidobenzothiazole-based inhibitors of mycobacterial DNA gyrase were discovered. Among these, compounds 49 and 51, show excellent antibacterial activity against Mycobacterium tuberculosis and Mycobacterium abscessus with a notable preference for mycobacteria. Both compounds can penetrate infected macrophages and reduce intracellular M. tuberculosis load. Compound 51 is a potent inhibitor of DNA gyrase (M. tuberculosis DNA gyrase IC50 = 4.1 nM, Escherichia coli DNA gyrase IC50 of <10 nM), selective for bacterial topoisomerases. It displays low MIC90 values (M. tuberculosis: 0.63 µM; M. abscessus: 2.5 µM), showing specificity for mycobacteria, and no apparent toxicity. Compound 49 not only displays potent antimycobacterial activity (MIC90 values of 2.5 µM for M. tuberculosis and 0.63 µM for M. abscessus) and selectivity for mycobacteria but also exhibits favorable solubility (kinetic solubility = 55 µM) and plasma protein binding (with a fraction unbound of 2.9 % for human and 4.7 % for mouse). These findings underscore the potential of fine-tuning molecular properties to develop DNA gyrase B inhibitors that specifically target the mycobacterial chemical space, mitigating the risk of resistance development in non-target pathogens and minimizing harm to the microbiome.


Asunto(s)
Antibacterianos , Girasa de ADN , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Inhibidores de Topoisomerasa II , Girasa de ADN/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Estructura Molecular , Ratones , Animales , Relación Dosis-Respuesta a Droga , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Desarrollo de Medicamentos , Mycobacterium/efectos de los fármacos
4.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37666966

RESUMEN

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Asunto(s)
Lignina , Madera , Biomasa , Celulosa
5.
6.
ACS Omega ; 8(27): 24387-24395, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457471

RESUMEN

We present a new series of 2-aminobenzothiazole-based DNA gyrase B inhibitors with promising activity against ESKAPE bacterial pathogens. Based on the binding information extracted from the cocrystal structure of DNA gyrase B inhibitor A, in complex with Escherichia coli GyrB24, we expanded the chemical space of the benzothiazole-based series to the C5 position of the benzothiazole ring. In particular, compound E showed low nanomolar inhibition of DNA gyrase (IC50 < 10 nM) and broad-spectrum antibacterial activity against pathogens belonging to the ESKAPE group, with the minimum inhibitory concentration < 0.03 µg/mL for most Gram-positive strains and 4-16 µg/mL against Gram-negative E. coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. To understand the binding mode of the synthesized inhibitors, a combination of docking calculations, molecular dynamics (MD) simulations, and MD-derived structure-based pharmacophore modeling was performed. The computational analysis has revealed that the substitution at position C5 can be used to modify the physicochemical properties and antibacterial spectrum and enhance the inhibitory potency of the compounds. Additionally, a discussion of challenges associated with the synthesis of 5-substituted 2-aminobenzothiazoles is presented.

7.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37094804

RESUMEN

Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.


Asunto(s)
Infecciones Bacterianas , Proteínas de Escherichia coli , Animales , Humanos , Colistina , Virulencia , Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos
8.
J Med Chem ; 66(6): 3968-3994, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36877255

RESUMEN

A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 µg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 µg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.


Asunto(s)
Staphylococcus aureus , Staphylococcus aureus Resistente a Vancomicina , Animales , Ratones , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV , Pruebas de Sensibilidad Microbiana
9.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759752

RESUMEN

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Asunto(s)
Bacteriófagos , Genes Bacterianos , Antibacterianos/farmacología , Metagenómica , Bacteriófagos/genética , Bacterias/genética
10.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36718533

RESUMEN

Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.


Asunto(s)
Antibacterianos , Transcriptoma , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/genética , Farmacorresistencia Bacteriana/genética
11.
Nat Ecol Evol ; 6(6): 763-773, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484218

RESUMEN

Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.


Asunto(s)
Saccharomycetales , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomycetales/genética
12.
Sci Rep ; 12(1): 6547, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449391

RESUMEN

Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce. Here, we classified the Escherichia coli proteome into rapidly and slowly aggregating proteins using an in vivo image-based screen coupled with machine learning. We find that the majority (70%) of cytosolic proteins that become insoluble upon overexpression have relatively low rates of aggregation and are unlikely to aggregate co-translationally. Remarkably, such proteins exhibit higher folding rates compared to rapidly aggregating proteins, potentially implying that they aggregate after reaching their folded states. Furthermore, we find that a substantial fraction (~ 35%) of the proteome remain soluble at concentrations much higher than those found naturally, indicating a large margin of safety to tolerate gene expression changes. We show that high disorder content and low surface stickiness are major determinants of high solubility and are favored in abundant bacterial proteins. Overall, our study provides a global view of aggregation rates and hence solubility limits of proteins in a bacterial cell.


Asunto(s)
Pliegue de Proteína , Proteoma , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Ribosomas/metabolismo , Solubilidad
13.
Mol Syst Des Eng ; 7(1): 21-33, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35127141

RESUMEN

The negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization. When co-administered as an adjuvant, the resulting compounds - PGLb1 and PGLb2 - have substantially reduced the level of antibiotic resistance of multi-drug resistant Escherichia coli, Klebsiella pneumoniae and Shigella flexneri clinical isolates. The observed antibiotic potentiation was mediated by hyperpolarization of the bacterial membrane caused by the alteration of cellular ion transport. Specifically, PGLb1 and PGLb2 are selective ionophores that enhance the Goldman-Hodgkin-Katz potential across the bacterial membrane. These findings indicate that manipulating bacterial membrane electrophysiology could be a valuable tool to overcome antimicrobial resistance.

14.
Commun Biol ; 4(1): 1169, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34621006

RESUMEN

ssDNA recombineering has been exploited to hyperdiversify genomically-encoded nanobodies displayed on the surface of Escherichia coli for originating new binding properties. As a proof-of-principle a nanobody recognizing the antigen TirM from enterohaemorrhagic E. coli (EHEC) was evolved towards the otherwise not recognized TirM antigen from enteropathogenic E. coli (EPEC). To this end, E. coli cells displaying this nanobody fused to the intimin outer membrane-bound domain were subjected to multiple rounds of mutagenic oligonucleotide recombineering targeting the complementarity determining regions (CDRs) of the cognate VHH gene sequence. Binders to the EPEC-TirM were selected upon immunomagnetic capture of bacteria bearing active variants and nanobodies identified with a new ability to strongly bind the new antigen. The results highlight the power of combining evolutionary properties of bacteria in vivo with oligonucleotide synthesis in vitro for the sake of focusing diversification to specific segments of a gene (or protein thereof) of interest.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Escherichia coli/inmunología , Anticuerpos de Dominio Único/inmunología , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo
16.
Eur J Med Chem ; 213: 113200, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524686

RESUMEN

The rise in multidrug-resistant bacteria defines the need for identification of new antibacterial agents that are less prone to resistance acquisition. Compounds that simultaneously inhibit multiple bacterial targets are more likely to suppress the evolution of target-based resistance than monotargeting compounds. The structurally similar ATP binding sites of DNA gyrase and topoisomerase Ⅳ offer an opportunity to accomplish this goal. Here we present the design and structure-activity relationship analysis of balanced, low nanomolar inhibitors of bacterial DNA gyrase and topoisomerase IV that show potent antibacterial activities against the ESKAPE pathogens. For inhibitor 31c, a crystal structure in complex with Staphylococcus aureus DNA gyrase B was obtained that confirms the mode of action of these compounds. The best inhibitor, 31h, does not show any in vitro cytotoxicity and has excellent potency against Gram-positive (MICs: range, 0.0078-0.0625 µg/mL) and Gram-negative pathogens (MICs: range, 1-2 µg/mL). Furthermore, 31h inhibits GyrB mutants that can develop resistance to other drugs. Based on these data, we expect that structural derivatives of 31h will represent a step toward clinically efficacious multitargeting antimicrobials that are not impacted by existing antimicrobial resistance.


Asunto(s)
Adenosina Trifosfato/farmacología , Antibacterianos/farmacología , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Adenosina Trifosfato/síntesis química , Adenosina Trifosfato/química , Antibacterianos/síntesis química , Antibacterianos/química , Cristalografía por Rayos X , Topoisomerasa de ADN IV/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/enzimología , Escherichia coli/patogenicidad , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad
17.
Nat Cancer ; 2(9): 950-961, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35121862

RESUMEN

Human leukocyte antigen class I (HLA-I) genes shape our immune response against pathogens and cancer. Certain HLA-I variants can bind a wider range of peptides than others, a feature that could be favorable against a range of viral diseases. However, the implications of this phenomenon on cancer immune response are unknown. Here we quantified peptide repertoire breadth (or promiscuity) of a representative set of HLA-I alleles and found that patients with cancer who were carrying HLA-I alleles with high peptide-binding promiscuity have significantly worse prognosis after immune checkpoint inhibition. This can be explained by a reduced capacity of the immune system to discriminate tumor neopeptides from self-peptides when patients carry highly promiscuous HLA-I variants, shifting the regulation of tumor-infiltrating T cells from activation to tolerance. In summary, HLA-I peptide-binding specificity shapes neopeptide immunogenicity and the self-immunopeptidome repertoire in an antagonistic manner, and could underlie a negative trade-off between antitumor immunity and genetic susceptibility to viral infections.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Alelos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Neoplasias/genética , Péptidos/genética , Linfocitos T
18.
Artículo en Inglés | MEDLINE | ID: mdl-35540496

RESUMEN

Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.

19.
Mol Biol Evol ; 38(3): 1137-1150, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33306797

RESUMEN

The fitness impact of loss-of-function mutations is generally assumed to reflect the loss of specific molecular functions associated with the perturbed gene. Here, we propose that rewiring of the transcriptome upon deleterious gene inactivation is frequently nonspecific and mimics stereotypic responses to external environmental change. Consequently, transcriptional response to gene deletion could be suboptimal and incur an extra fitness cost. Analysis of the transcriptomes of ∼1,500 single-gene deletion Saccharomyces cerevisiae strains supported this scenario. First, most transcriptomic changes are not specific to the deleted gene but are rather triggered by perturbations in functionally diverse genes. Second, gene deletions that alter the expression of dosage-sensitive genes are especially harmful. Third, by elevating the expression level of downregulated genes, we could experimentally mitigate the fitness defect of gene deletions. Our work shows that rewiring of genomic expression upon gene inactivation shapes the harmful effects of mutations.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mutación con Pérdida de Función , Eliminación de Gen , Saccharomyces cerevisiae , Transcriptoma
20.
Pharmaceutics ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374964

RESUMEN

The discovery of multi-targeting ligands of bacterial enzymes is an important strategy to combat rapidly spreading antimicrobial resistance. Bacterial DNA gyrase and topoisomerase IV are validated targets for the development of antibiotics. They can be inhibited at their catalytic sites or at their ATP binding sites. Here we present the design of new hybrids between the catalytic inhibitor ciprofloxacin and ATP-competitive inhibitors that show low nanomolar inhibition of DNA gyrase and antibacterial activity against Gram-negative pathogens. The most potent hybrid 3a has MICs of 0.5 µg/mL against Klebsiella pneumoniae, 4 µg/mL against Enterobacter cloacae, and 2 µg/mL against Escherichia coli. In addition, inhibition of mutant E. coli strains shows that these hybrid inhibitors interact with both subunits of DNA gyrase (GyrA, GyrB), and that binding to both of these sites contributes to their antibacterial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA