Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 11(1): 35-43, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35641167

RESUMEN

The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.


Asunto(s)
Células Madre Mesenquimatosas , Células Madre de Sangre Periférica , Células Endoteliales , Humanos , Células Madre Mesenquimatosas/fisiología , Pericitos , Células Madre/fisiología
2.
Methods Mol Biol ; 2235: 127-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576974

RESUMEN

Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.


Asunto(s)
Células de la Médula Ósea/metabolismo , Pericitos/metabolismo , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/citología , Regeneración Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Separación Celular/métodos , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Osteogénesis/fisiología , Pericitos/citología , Ratas
3.
Methods Mol Biol ; 2235: 169-180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576977

RESUMEN

Renal pericytes have a critical importance for angiogenesis and vascular remodeling, medullary blood flow regulation, and development of fibrosis. An emerging role for kidney pericytes is their ability to induce renin expression and synthesis. Here, we present methods for purification of human renal pericytes, their primary culture, and differentiation into renin-producing cells. Possible applications of these protocols include investigations into (1) renin cell recruitment mechanisms, (2) modulation of renin expression/secretion by small molecules, and (3) renin expression/secretion in nonrenal pericytes. A potential therapeutic application of this work is the identification of new players regulating the renin-angiotensin system.


Asunto(s)
Pericitos/metabolismo , Cultivo Primario de Células/métodos , Sistema Renina-Angiotensina/fisiología , Angiotensinas/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Humanos , Riñón/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos
4.
NPJ Regen Med ; 4: 22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815001

RESUMEN

The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA