Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 84: 105453, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35944748

RESUMEN

Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 µM, but the NP declined at higher concentrations (>3 µM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4ß2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.


Asunto(s)
Memantina , Fármacos Neuroprotectores , Hipocampo/metabolismo , Memantina/metabolismo , Memantina/farmacología , N-Metilaspartato/toxicidad , Neuroprotección , Fármacos Neuroprotectores/farmacología , Nicotina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Neurochem Res ; 40(10): 2143-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26438150

RESUMEN

Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase nine inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5-10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Hipocampo/efectos de los fármacos , Isoflurofato/farmacología , Fármacos Neuroprotectores/farmacología , Sinapsis/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Animales , Atropina/farmacología , Hipocampo/metabolismo , Masculino , Neuroprotección/fisiología , Compuestos de Pralidoxima/farmacología , Ratas Sprague-Dawley , Sinapsis/metabolismo
3.
Bioorg Med Chem ; 21(15): 4678-86, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23769165

RESUMEN

Diisopropylfluorophosphate (DFP) is an organophosphorous insecticide used as a surrogate for the more toxic chemical warfare nerve agent sarin. DFP produces neurotoxicity in vivo and irreversibly decreases the area of population spikes recorded from the CA1 region of acute hippocampal slices. (1S,2E,4R,6R,7E,11E)-2,7,11-Cembratriene-4,6-diol (1) is a neuroprotective natural cembranoid that reverses DFP-induced damage both in vivo and in the hippocampal slice. Cembranoid 1 acts by noncompetitive inhibition of the α7 nicotinic acetylcholine receptor. This study aims at establishing a preliminary structure-activity relationship to define the neuroprotective cembranoid pharmacophores using the hippocampal slice assay and pharmacophore modeling. Fourteen natural, semisynthetic, or biocatalytic cembranoid analogues 2-15 related to 1 were tested for their capacity to protect the population spikes from DFP-induced damage and intrinsic toxicity. Twelve cembranoids caused significant reversal of DFP toxicity; only 3 active analogues displayed minor intrinsic toxicity at 10 µM. The C-4 epimer of 1 (2) and the 4-O-methyl ether analogue of 1 (3), were totally devoid of neuroprotective activity. The results suggested a model for cembranoid binding where the hydrophobic ring surface binds to a hydrophobic (Hbic) patch on the receptor molecule and an electronegative atom (oxygen or sulfur) in proper spatial relationship to the ring surface interacts with an electropositive group in the receptor binding site. A pharmacophore model consisting of 1 hydrogen bond acceptor (HBA), 2 Hbic, and 10 exclusion spheres was established using HipHop-REFINE and supported the above mentioned pharmacophoric hypothesis.


Asunto(s)
Diterpenos/química , Diterpenos/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Animales , Diterpenos/síntesis química , Femenino , Hipocampo/efectos de los fármacos , Modelos Moleculares , Fármacos Neuroprotectores/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
4.
J Neurosci Res ; 91(3): 416-25, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23280428

RESUMEN

Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases and hypoxic ischemic events as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4ß2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in an α4ß2-dependent manner. Neuroprotection was assessed as the prevention of the N-methyl-D-aspartate-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of γ-aminobutyric acid (GABA). Blocking either α7 or GABA(A) receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4ß2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4ß2 nAChRs.


Asunto(s)
Antagonistas del GABA/farmacología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Humanos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/fisiología , Receptor Nicotínico de Acetilcolina alfa 7
5.
PLoS One ; 7(2): e30755, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22348022

RESUMEN

BACKGROUND: Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. PRINCIPAL FINDINGS: Bradykinin at 10 nM and 1 µM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. CONCLUSIONS: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.


Asunto(s)
Bradiquinina/toxicidad , N-Metilaspartato , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B2/fisiología , Animales , Bradiquinina/administración & dosificación , Bradiquinina/análogos & derivados , Química Encefálica , Región CA1 Hipocampal , Carboxipeptidasas/metabolismo , Fármacos Neuroprotectores , Ratas , Receptor de Bradiquinina B1/fisiología
6.
Toxicol In Vitro ; 25(7): 1468-74, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21569834

RESUMEN

Many neurotoxic organophosphates (OPs) inhibit acetylcholinesterase (AChE) and as a result can cause a life threatening cholinergic crisis. Current medical countermeasures, which typically include atropine and oximes target the cholinergic crisis and are effective in decreasing mortality but do not sufficiently protect against delayed neurological deficits. There is, therefore, a need to develop neuroprotective drugs to prevent long-term neurological deficits. We used acute hippocampal slices to test the hypothesis that 4R,6R-cembratrienediol (4R) protects against functional damage caused by the OP paraoxon (POX). To assess hippocampal function, we measured synaptically evoked population spikes (PSs). Application of 4R reversed POX inhibition of PSs and the EC(50) of this effect was 0.8 µM. Atropine alone did not protect against POX neurotoxicity, but it did enhance protection by 4R. Pralidoxime partially regenerated AChE activity and protected against POX inhibition of PSs. 4R did not regenerate AChE suggesting that under our experimental conditions, the deleterious effect of POX on hippocampal function is not directly related to AChE inhibition. In conclusion, 4R is a promising neuroprotective compound against OP neurotoxins.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Diterpenos/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Paraoxon/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Atropina/farmacología , Reactivadores de la Colinesterasa/farmacología , Diterpenos/química , Relación Dosis-Respuesta a Droga , Hipocampo/citología , Masculino , Fármacos Neuroprotectores/química , Parasimpatolíticos/farmacología , Compuestos de Pralidoxima/farmacología , Ratas , Ratas Sprague-Dawley
7.
J Neurosci Res ; 82(5): 631-41, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16247800

RESUMEN

Nicotine has been reported to be neuroprotective in experimental and epidemiological studies. In addition to nicotine, tobacco and cigarette smoke contain cembranoids, which are antagonists of neuronal nicotinic receptors (nAChR). Exposure of hippocampal slices to N-methyl-D-aspartate (NMDA) decreases the population spikes (PS). This parameter has been used as a measure of excitotoxicity. Surprisingly, both nicotine and tobacco cembranoids protected against NMDA and this neuroprotection was not blocked by methyllycaconitine (MLA), an antagonist of alpha7 nAChR. On the contrary, MLA had a neuroprotective effect of its own. We examined the effect of the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R) on the neuroprotection against NMDA. DHbetaE, a selective antagonist of alpha4beta2 nAChR, inhibited the neuroprotection by nicotine, 4R, and MLA, suggesting the involvement of alpha4beta2 nAChRs in the neuroprotection. The cell-signaling pathways underlying the neuroprotection by 4R and by nicotine are different. The activity of phosphatidylinositol-3 kinase (PI3K) was required in both cases; however, 4R required the activity of L-type calcium channels and CAM kinase, whereas nicotine required the extracellular signal regulated kinase-1,2 (ERK) and protein kinase C (PKC). In addition, 4R did not enhance total phospho-ERK-1/2 but increased the amount of total Akt/PKB phosphorylated on the activation site and of glycogen synthase kinase 3-beta phosphorylated on the inhibitory site. Total levels of phosphoenzymes are presented instead of the ratio of phospho- over total enzyme because in preliminary experiments total ERK-1/2 levels were slightly increased by 4R. In conclusion, these findings demonstrate that there are two different nicotinic neuroprotective mechanisms mediated by alpha4beta2.


Asunto(s)
N-Metilaspartato/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Nicotiana/química , Antagonistas Nicotínicos/farmacología , Extractos Vegetales/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diterpenos/farmacología , Interacciones Farmacológicas/fisiología , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/antagonistas & inhibidores , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo
8.
J Pharmacol Exp Ther ; 305(3): 1071-8, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12649299

RESUMEN

Although in neuronal cultures nicotine was reported to prevent early and delayed excitotoxic death, no studies with nicotinic drugs have been done with acute hippocampal slices. We investigated the effect of nicotine and methyllycaconitine (MLA) on the toxicity of N-methyl-d-aspartate (NMDA) in the CA1 area of hippocampal slices. The excitotoxic effect of NMDA was assessed as decreased recovery of the capability to produce synaptically evoked population spikes (PSs). Application of nicotine or MLA before NMDA application increased the recovery of PSs. This electrophysiological recovery was used as a measure of the early neuroprotective events. The neuroprotection conferred by both nicotine and MLA was inhibited by dihydro-beta-erythroidine, showing mediation of neuroprotection by alpha 4 beta 2 neuronal nicotinic receptors (nAChRs). Because nicotine activates alpha 4 beta 2 and other nAChR subtypes, whereas 10 nM MLA inhibits the alpha 7 subtype, we propose the involvement of a neuronal circuitry-dependent mechanism for nicotinic neuroprotection. The effect of nicotine downstream from the receptors was investigated using inhibitors of cell signaling. The results suggest that the effect of nicotine is mediated by tyrosine receptor kinases, 1,2-phosphatidylinositol-3 kinase, and the mitogen-activated extracellular signal-regulated kinases. Although nicotine neuroprotection is Ca2+-dependent, neither L-type Ca2+ channels nor calmodulin-dependent protein kinase is involved in the effect of nicotine. In summary, these results suggest that in acute slices nicotinic protection is initiated either by direct activation of alpha 4 beta 2 or indirectly by inhibition of alpha 7 followed by signal transduction involving tyrosine kinases, phospholipid-dependent kinases, and mitogen-activated kinases.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , N-Metilaspartato/farmacología , Receptores Nicotínicos/fisiología , Animales , Femenino , Hipocampo/fisiología , Técnicas In Vitro , Nicotina/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA