Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37755217

RESUMEN

In this work, poly(vinyl chloride)-based polymeric ionic liquid inclusion membranes were used in the selective separation of Fe(III), Zn(II), Cd(II), and Cu(II) from hydrochloride aqueous solutions. The ionic liquids under study were 1-octyl-3-methylimidazolium hexafluorophosphate, [omim+][PF6-] and methyl trioctyl ammonium chloride, [MTOA+][Cl-]. For this purpose, stability studies of different IL/base polymer compositions against aqueous phases were carried out. Among all polymer inclusion membranes studied, [omim+][PF6-]/PVC membranes at a ratio of 30/70 and [MTOA+][Cl-]/PVC membranes at a ratio of 70/30 were able to retain up to 82% and 48% of the weight of the initial ionic liquid, respectively, after being exposed to a solution of metal ions in 1 M HCl for 2048 h (85 days). It was found that polymer inclusion membranes based on the ionic liquid methyl trioctyl ammonium chloride allowed the selective separation of Zn(II)/Cu(II) and Zn(II)/Fe(III) mixtures with separation factors of 1996, 606 and, to a lesser extent but also satisfactorily, Cd(II)/Cu(II) mixtures, with a separation factor of 112. Therefore, selecting the appropriate ionic liquid/base polymer mixture makes it possible to create polymeric inclusion membranes capable of selectively separating target metal ions.

2.
Appl Biochem Biotechnol ; 190(1): 1-17, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31297755

RESUMEN

A novel concept of membrane bioreactor based on polymeric ionic liquids laccase membrane has been implemented in batch process for decolorization of the anthraquinonic dye Remazol Brillant Blue R (RBBR). New laccase immobilization strategy has been optimized by casting the enzyme into a polymeric inclusion membrane (PIM) using ionic liquids (ILs) and polyvinyl chloride (PVC) leading to laccase polymeric IL membrane (PILM). Four different ILs (1-octyl-3-metylimidazolium bis(trifluoromethylsulfonyl)imide, [OMIM][NTF2]; cholinium bis(trifluoromethylsulfonyl)imide, [Ch ol][NTF2]; cholinium dihydrogenphosphate, [Chol][H2PO4] and hydroxyethylammonium formate, [HEA][Fo]) have been screened and mixed to constitute the active phase of the support of PIM. This strategy has been fully succeeded since high laccase immobilization rates were recorded (about 98%) when using the optimal mixture containing three ILs (45% [OMIM][NTf2]/5% [Chol][NTf2]/2.5% [HEA][Fo]) and supplemented by 0.5% glutaraldehyde. It was found that such mixture contributes to increase the stability and reusability of laccase-PILM during eight successive assays in a batch discontinued stirred reactor. Decolorization rate of 75% has been reached in the batch decolorization process of RBBR with high reusability yield. Graphical Abstract Decolorization of RBBR by PILM_laccase.


Asunto(s)
Reactores Biológicos , Reactivos de Enlaces Cruzados/química , Enzimas Inmovilizadas/metabolismo , Líquidos Iónicos/química , Lacasa/metabolismo , Membranas Artificiales , Color
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...