Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Front Neurol ; 12: 716548, 2021.
Article En | MEDLINE | ID: mdl-34690914

Background: Plasma concentration of natalizumab falls above the therapeutic threshold in many patients who, therefore, receive more natalizumab than necessary and have higher risk of progressive multifocal leukoencephalopathy. Objective: To assess in a single study the individual and treatment characteristics that influence the pharmacokinetics and pharmacodynamics of natalizumab in multiple sclerosis (MS) patients in the real-world practice. Methods: Prospective observational study to analyse the impact of body weight, height, body surface area, body mass index, gender, age, treatment duration, and dosage scheme on natalizumab concentrations and the occupancy of α4-integrin receptor (RO) by natalizumab. Results: Natalizumab concentrations ranged from 0.72 to 67 µg/ml, and RO from 26 to 100%. Body mass index inversely associated with natalizumab concentration (beta = -1.78; p ≤ 0.001), as it did body weight (beta = -0.34; p = 0.001), but not height, body surface area, age or gender Extended vs. standard dose scheme, but not treatment duration, was inversely associated with natalizumab concentration (beta = -7.92; p = 0.016). Similar to natalizumab concentration, body mass index (beta = -1.39; p = 0.001) and weight (beta = -0.31; p = 0.001) inversely impacted RO. Finally, there was a strong direct linear correlation between serum concentrations and RO until 9 µg/ml (rho = 0.71; p = 0.003). Nevertheless, most patients had higher concentrations of natalizumab resulting in the saturation of the integrin. Conclusions: Body mass index and dosing interval are the main variables found to influence the pharmacology of natalizumab. Plasma concentration of natalizumab and/or RO are wide variable among patients and should be routinely measured to personalize treatment and, therefore, avoid either over and underdosing.

2.
Biomark Res ; 8: 54, 2020.
Article En | MEDLINE | ID: mdl-33110606

T-cell prolymphocytic leukemia (T-PLL) is a poor prognostic disease with very limited options of efficient therapies. Most patients are refractory to chemotherapies and despite high response rates after alemtuzumab, virtually all patients relapse. Therefore, there is an unmet medical need for novel therapies in T-PLL. As the chemokine receptor CCR7 is a molecule expressed in a wide range of malignancies and relevant in many tumor processes, the present study addressed the biologic role of this receptor in T-PLL. Furthermore, we elucidated the mechanisms of action mediated by an anti-CCR7 monoclonal antibody (mAb) and evaluated whether its anti-tumor activity would warrant development towards clinical applications in T-PLL. Our results demonstrate that CCR7 is a prognostic biomarker for overall survival in T-PLL patients and a functional receptor involved in the migration, invasion, and survival of leukemic cells. Targeting CCR7 with a mAb inhibited ligand-mediated signaling pathways and induced tumor cell killing in primary samples. In addition, directing antibodies against CCR7 was highly effective in T-cell leukemia xenograft models. Together, these findings make CCR7 an attractive molecule for novel mAb-based therapeutic applications in T-PLL, a disease where recent drug screen efforts and studies addressing new compounds have focused on chemotherapy or small molecules. SUPPLEMENTARY INFORMATION: Supplementary information accompanies this paper at 10.1186/s40364-020-00234-z.

3.
Bone Marrow Transplant ; 55(10): 1935-1945, 2020 10.
Article En | MEDLINE | ID: mdl-32086495

Graft-versus-host disease (GVHD) is the main complication after allogeneic hematopoietic stem cell transplantation. We previously unveiled a correlation between proportions of C-C motif chemokine receptor 7 (CCR7)+ T cells in the apheresis and the risk of developing GVHD. We wanted to evaluate in vivo whether apheresis with low proportion of CCR7+ cells or treatment with an anti-human CCR7 monoclonal antibody (mAb) were suitable strategies to prevent or treat acute GVHD in preclinical xenogeneic models. Therapeutic anti-CCR7 mAb was the most effective strategy in both prophylactic and therapeutic settings where antibody drastically reduced in vivo lymphoid organ infiltration of donor CCR7+ T cells, extended lifespan and solved clinical signs. The antibody neutralized in vitro migration of naïve and central memory T cells toward CCR7 ligands and depleted target CCR7+ subsets through complement activation. Both mechanisms of action spared CCR7- subsets, including effector memory and effector memory CD45RA+ T cells which may mediate graft versus leukemia effect and immunity against infections. Accordingly, the numbers of donor CCR7+ T cells in the apheresis were not associated to cytomegalovirus reactivation or the recurrence of the underlying disease. These findings provide a promising new strategy to prevent and treat acute GVHD, a condition where new specific, safety and effective treatment is needed.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Receptors, CCR7 , Graft vs Host Disease/drug therapy , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Receptors, CCR7/drug effects , T-Lymphocytes
4.
Front Pharmacol ; 10: 1340, 2019.
Article En | MEDLINE | ID: mdl-31824308

Introduction: Dasatinib is a dual SRC/ABL tyrosine kinase inhibitor used to treat chronic myeloid leukemia (CML) that is known to have unique immunomodulatory effects. In particular, dasatinib intake typically causes lymphocytosis, which has been linked to better clinical response. Since the underlying mechanisms are unknown and SRC family kinases are involved in many cell motility processes, we hypothesized that the movement and migration of lymphocytes is modulated by dasatinib. Patients, Materials and Methods: Peripheral blood samples from CML patients treated with second-line dasatinib were collected before and 2 h after the first dasatinib intake, and follow-up samples from the same patients 3 and 6 months after the start of therapy. The migratory capacity and phenotype of lymphocytes and differential blood counts before and after drug intake were compared for all study time-points. Results: We report here for the first time that dasatinib intake is associated with inhibition of peripheral blood T-cell migration toward the homeostatic chemokines CCL19 and CCL21, which control the trafficking toward secondary lymphoid organs, mainly the lymph nodes. Accordingly, the proportion of lymphocytes in blood expressing CCR7, the chemokine receptor for both CCL19 and CCL21, decreased after the intake including both naïve CD45RA+ and central memory CD45RO+ T-cells. Similarly, naïve B-cells diminished with dasatinib. Finally, such changes in the migratory patterns did not occur in those patients whose lymphocyte counts remained unchanged after taking the drug. Discussion: We, therefore, conclude that lymphocytosis induced by dasatinib reflects a pronounced redistribution of naïve and memory populations of all lymphocyte subsets including CD4+ and CD8+ T-cells and B-cells.

5.
Clin Cancer Res ; 23(21): 6697-6707, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-28821556

Purpose: Dasatinib is a short-acting dual ABL/SRC family tyrosine kinase inhibitor (TKI), which is frequently used to treat chronic myeloid leukemia. Although very effective, patients taking dasatinib often display severe adverse effects, including pleural effusions and increased risk of bleeding primarily in the gastrointestinal tract. The actual causes of these side effects are currently undetermined. We hypothesize that endothelial cells (ECs) that line the inner walls of blood vessels and control the traffic to the underlying tissues might be involved.Experimental Design: The effects of TKIs on ECs were studied by various assays, such as real-time cell impedance measurements, live-cell microscopy, wound healing, Western blot, and an in vivo model.Results: Dasatinib uniquely causes a profound, dose-dependent disorganization of the EC monolayers. Dasatinib promoted the disassembly of cell-cell contacts, altered cell-matrix contacts, and further altered the wound healing. A key observation is that this effect is fully reversible after drug washout. In line with these in vitro observations, intraperitoneal administration of dasatinib to mice caused significant vascular leakage in the intestine. The underlying molecular mechanism of dasatinib-induced reorganization of the actin involves ROCK activation, which increases the amount of the phosphorylation of myosin light chain and consequently activates the non-muscle myosin II.Conclusions: Our data are consistent with a scenario in which dasatinib triggers a transient increase in vascular leakage that probably contributes to adverse effects such as bleeding diathesis and pleural effusions. Clin Cancer Res; 23(21); 6697-707. ©2017 AACR.


Dasatinib/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Molecular Motor Proteins/agonists , rho-Associated Kinases/genetics , Actins/metabolism , Animals , Cell Line, Tumor , Dasatinib/adverse effects , Endothelial Cells/drug effects , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Myosin Heavy Chains , Wound Healing/drug effects , Xenograft Model Antitumor Assays , rho-Associated Kinases/metabolism
...