Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 276: 116641, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971047

RESUMEN

Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 µM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.

2.
J Med Chem ; 67(13): 10643-10654, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38924701

RESUMEN

Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them. Here, we explored the biological activity of a small library of G4-DNA ligands, exploiting the NDI pharmacophore, against both Trypanosoma brucei and Leishmania major parasites. Biophysical and biological assays were conducted. Among the various families analyzed, core-extended NDIs exhibited the most promising results concerning the selectivity and antiparasitic effects. NDI 16 emerged as the most potent, with an IC50 of 0.011 nM against T. brucei and remarkable selectivity vs MRC-5 cells (3454-fold). Fascinating, 16 is 480-fold more potent than the standard drug pentamidine (IC50 = 5.3 nM). Cellular uptake and parasite localization were verified by exploiting core-extended NDI red-fluorescent emission.


Asunto(s)
G-Cuádruplex , Imidas , Leishmania major , Naftalenos , Tripanocidas , Trypanosoma brucei brucei , G-Cuádruplex/efectos de los fármacos , Relación Estructura-Actividad , Naftalenos/farmacología , Naftalenos/química , Imidas/química , Imidas/farmacología , Ligandos , Trypanosoma brucei brucei/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Humanos , Leishmania major/efectos de los fármacos , Línea Celular
3.
Sensors (Basel) ; 23(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067707

RESUMEN

The worldwide popularisation of running as a sport and recreational practice has led to a high rate of musculoskeletal injuries, usually caused by a lack of knowledge about the most suitable running technique for each runner. This running technique is determined by a runner's anthropometric body characteristics, dexterity and skill. Therefore, this study aims to develop a motion capture-based running analysis test on a treadmill called KeepRunning to obtain running patterns rapidly, which will aid coaches and clinicians in assessing changes in running technique considering changes in the study variables. Therefore, a review and proposal of the most representative events and variables of analysis in running was conducted to develop the KeepRunning test. Likewise, the minimal detectable change (MDC) in these variables was obtained using test-retest reliability to demonstrate the reproducibility and viability of the test, as well as the use of MDC as a threshold for future assessments. The test-retest consisted of 32 healthy volunteer athletes with a running training routine of at least 15 km per week repeating the test twice. In each test, clusters of markers were placed on the runners' body segments using elastic bands and the volunteers' movements were captured while running on a treadmill. In this study, reproducibility was defined by the intraclass correlation coefficient (ICC) and MDC, obtaining a mean value of ICC = 0.94 ± 0.05 for all variables and MDC = 2.73 ± 1.16° for the angular kinematic variables. The results obtained in the test-retest reveal that the reproducibility of the test was similar or better than that found in the literature. KeepRunning is a running analysis test that provides data from the involved body segments rapidly and easily interpretable. This data allows clinicians and coaches to objectively provide indications for runners to improve their running technique and avoid possible injury. The proposed test can be used in the future with inertial motion capture and other wearable technologies.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Tiempo de Protrombina , Fenómenos Biomecánicos
4.
Bioorg Med Chem ; 71: 116946, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35939903

RESUMEN

Naphthalene diimide (NDI) is a central scaffold that has been commonly used in the design of G-quadruplex (G4) ligands. Previous work revealed notable anticancer activity of a disubstituted N-methylpiperazine propyl NDI G4 ligand. Here, we explored structure-activity relationship studies around ligand bis-N,N-2,7-(3-(4-methylpiperazin-1-yl)propyl)-1,4,5,8-naphthalenetetracarboxylic diimide, maintaining the central NDI core whilst modifying the spacer and the nature of the cationic groups. We prepared new disubstituted NDI derivatives of the original compound and examined their in vitro antiproliferative and antiparasitic activity. Several N-methylpiperazine propyl NDIs showed sub-micromolar activity against Trypanosoma brucei and Leishmania major parasites with up to 30 fold selectivity versus MRC-5 cells. The best compound was a dimorpholino NDI with an IC50 of 0.17 µM against T.brucei and 40 fold selectivity versus MRC-5 cells. However, no clear correlation between G4 binding of the new NDI derivatives and antiproliferative or antiparasitic activity was observed, indicating that other mechanisms of action may be responsible for the observed biological activity.


Asunto(s)
Antiparasitarios , G-Cuádruplex , Antiparasitarios/química , Antiparasitarios/farmacología , Imidas/química , Imidas/farmacología , Ligandos , Naftalenos , Relación Estructura-Actividad
5.
Sensors (Basel) ; 21(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450929

RESUMEN

The popularization and industrialization of fitness over the past decade, with the rise of big box gyms and group classes, has reduced the quality of the basic formation and assessment of practitioners, which has increased the risk of injury. For most lifting exercises, a universal recommendation is maintaining a neutral spine position. Otherwise, there is a risk of muscle injury or, even worse, of a herniated disc. Maintaining the spine in a neutral position during lifting exercises is difficult, as it requires good core stability, a good hip hinge and, above all, observation of the posture in order to keep it correct. For this reason, in this work the authors propose the prevention of lumbar injuries with two inertial measurement units. The relative rotation between two sensors was measured for 39 voluntary subjects during the performance of two lifting exercises: the American kettlebell swing and the deadlift. The accuracy of the measurements was evaluated, especially in the presence of metals and for fast movements, by comparing the obtained results with those from an optical motion capture system. Finally, in order to develop a tool for improving sport performance and preventing injury, the authors analyzed the recorded motions, seeking to identify the most relevant parameters for good and safe lifting execution.


Asunto(s)
Traumatismos de la Espalda , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos , Ejercicio Físico , Humanos , Elevación , Columna Vertebral
6.
Chem Sci ; 12(22): 7800-7808, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-34168834

RESUMEN

In living cells, communication requires the action of membrane receptors that are activated following very small environmental changes. A binary all-or-nothing behavior follows, making the organism extremely efficient at responding to specific stimuli. Using a minimal system composed of lipid vesicles, chemical models of a membrane receptor and their ligands, we show that bio-mimetic ON/OFF assembly of high avidity, multivalent domains is triggered by small temperature changes. Moreover, the intensity of the ON signal at the onset of the switch is modulated by the presence of small, weakly binding divalent ligands, reminiscent of the action of primary messengers in biological systems. Based on the analysis of spectroscopic data, we develop a mathematical model that rigorously describes the temperature-dependent switching of the membrane receptor assembly and ligand binding. From this we derive an equation that predicts the intensity of the modulation of the ON signal by the ligand-messenger as a function of the pairwise binding parameters, the number of binding sites that it features and the concentration. The behavior of our system, and the model derived, highlight the usefulness of weakly binding ligands in the regulation of membrane receptors and the pitfalls inherent to their binding promiscuity, such as non-specific binding to the membrane. Our model, and the equations derived from it, offer a valuable tool for the study of membrane receptors in both biological and biomimetic settings. The latter can be exploited to program membrane receptor avidity on sensing vesicles, create hierarchical protocell tissues or develop highly specific drug delivery vehicles.

7.
Sensors (Basel) ; 21(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435369

RESUMEN

Optical motion capture is currently the most popular method for acquiring motion data in biomechanical applications. However, it presents a number of problems that make the process difficult and inefficient, such as marker occlusions and unwanted reflections. In addition, the obtained trajectories must be numerically differentiated twice in time in order to get the accelerations. Since the trajectories are normally noisy, they need to be filtered first, and the selection of the optimal amount of filtering is not trivial. In this work, an extended Kalman filter (EKF) that manages marker occlusions and undesired reflections in a robust way is presented. A preliminary test with inertial measurement units (IMUs) is carried out to determine their local reference frames. Then, the gait analysis of a healthy subject is performed using optical markers and IMUs simultaneously. The filtering parameters used in the optical motion capture process are tuned in order to achieve good correlation between the obtained accelerations and those measured by the IMUs. The results show that the EKF provides a robust and efficient method for optical system-based motion analysis, and that the availability of accelerations measured by inertial sensors can be very helpful for the adjustment of the filters.


Asunto(s)
Algoritmos , Análisis de la Marcha , Aceleración , Acelerometría , Marcha , Humanos , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA