Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microsc ; 249(3): 215-35, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23323728

RESUMEN

The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section.

2.
Ultramicroscopy ; 107(2-3): 213-26, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16949755

RESUMEN

Imaging of weak amplitude and phase objects, such as unstained vitrified biological samples, by conventional transmission electron microscopy (TEM) suffers from poor object contrast since the amplitude and phase of the scattered electron wave change only very little. In phase contrast light microscopy the imaging of weak phase objects is greatly enhanced by the use of a quarter-wave phase plate, which produces high signal contrast by shifting the phase of the scattered light. An analogous quarter-wave plate for the electron microscope, designed as an electrostatic einzel lens, was proposed by Boersch in 1947 but the small dimensions of the device have impeded its realization up to now. We here present the first fabrication and application of a miniaturized electrostatic einzel lens driven as TEM quarter-wave phase plate. Phase modulation is generated by the electrostatic field confined to the inside of a microstructured ring electrode. This field affects the phase velocity of the unscattered part of the electron wave. By varying its strength the phase shift of the primary beam can be adjusted to pi/2, producing strong phase contrast independent of spatial frequency. The phase plate proves to be mechanically stable and does not impair image quality, in particular it does not reduce the high-resolution signal. The expected residual lens effect of the einzel lens is minimal. Our microlens is supported by conducting rods arranged in a threefold symmetry. This particular geometry provides optimized single-sideband signal transfer for spatial frequencies otherwise obstructed by the supporting rods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...