Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(2): H511-H519, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275519

RESUMEN

In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.


Asunto(s)
Circulación Sanguínea , Presión Sanguínea , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Alquinos/farmacología , Animales , Antihipertensivos/farmacología , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Cuerpo Carotídeo/fisiopatología , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Gasotransmisores/sangre , Glicina/análogos & derivados , Glicina/farmacología , Hexametonio/farmacología , Sulfuro de Hidrógeno/sangre , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/fisiopatología , Resistencia Vascular
2.
Am J Physiol Heart Circ Physiol ; 317(5): H1157-H1165, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625777

RESUMEN

Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [ß-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg-1·min-1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline -1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline -0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg-1·min-1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone.NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Arterias Mesentéricas/metabolismo , Arteria Renal/metabolismo , Circulación Renal , Circulación Esplácnica , Alanina/análogos & derivados , Alanina/farmacología , Animales , Presión Arterial , Velocidad del Flujo Sanguíneo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratas Sprague-Dawley , Arteria Renal/efectos de los fármacos , Circulación Renal/efectos de los fármacos , Circulación Esplácnica/efectos de los fármacos , Sulfuros/farmacología , Resistencia Vascular
3.
Am J Physiol Renal Physiol ; 315(4): F927-F941, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897288

RESUMEN

Kidney injury and sleep apnea (SA) are independent risk factors for hypertension. Exposing rats to intermittent hypoxia (IH) to simulate SA increases blood pressure whereas adenine feeding causes persistent kidney damage to model chronic kidney disease (CKD). We hypothesized that exposing CKD rats to IH would exacerbate the development of hypertension and renal failure. Male Sprague-Dawley rats were fed a 0.2% adenine diet or control diet (Control) until blood urea nitrogen was >120 mg/dl in adenine-fed rats (14 ± 4 days, mean ± SE). After 2 wk of recovery on normal chow, rats were exposed to IH (20 exposures/h of 5% O2-5% CO2 7 h/day) or control conditions (Air) for 6 wk. Mean arterial pressure (MAP) was monitored with telemeters, and plasma and urine samples were collected weekly to calculate creatinine clearance as an index of glomerular filtration rate (GFR). Prior to IH, adenine-fed rats had higher blood pressure than rats on control diet. IH treatment increased MAP in both groups, and after 6 wk, MAP levels in the CKD/IH rats were greater than those in the CKD/Air and Control/IH rats. MAP levels in the Control/Air rats were lower than those in the other three groups. Kidney histology revealed crystalline deposits, tubule dilation, and interstitial fibrosis in both CKD groups. IH caused no additional kidney damage. Plasma creatinine was similarly increased in both CKD groups throughout whereas IH alone increased plasma creatinine. IH increases blood pressure further in CKD rats without augmenting declines in GFR but appears to impair GFR in healthy rats. We speculate that treating SA might decrease hypertension development in CKD patients and protect renal function in SA patients.


Asunto(s)
Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Hipoxia/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Animales , Presión Arterial/fisiología , Enfermedades Cardiovasculares/fisiopatología , Riñón/fisiopatología , Pruebas de Función Renal , Masculino , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/complicaciones
4.
Am J Physiol Heart Circ Physiol ; 312(4): H791-H799, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130342

RESUMEN

Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O2-5% CO2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H2S)-induced vasodilation in rats. The enzyme that produces H2S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca2+ concentration ([Ca2+]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca2+] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P < 0.05), and fewer EC were NFATc3 nuclear positive in IH rat arteries than in sham rat arteries (IH = 13 ± 3, sham = 59 ± 11%, P < 0.05). H2S production was also lower in mesenteric tissue from IH rats vs. sham rats. Endothelium-dependent vasodilation to acetylcholine (ACh) was lower in mesenteric arteries from IH rats than in arteries from sham rats, and inhibiting CSE with ß-cyanoalanine diminished ACh-induced vasodilation in arteries from sham but not IH rats but did not affect dilation to the H2S donor NaHS. Thus, IH lowers EC [Ca2+], NFAT activity, CSE expression and activity, and H2S production while inhibiting NFAT activation lowers CSE expression. The observations that IH exposure decreases NFATc3 activation and CSE-dependent vasodilation support a role for NFAT in regulating endothelial H2S production.NEW & NOTEWORTHY This study identifies the calcium-regulated transcription factor nuclear factor of activated T cells as a novel regulator of cystathionine γ-lyase (CSE). This pathway is basally active in mesenteric artery endothelial cells, but, after exposure to intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation.


Asunto(s)
Cistationina gamma-Liasa/biosíntesis , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Factores de Transcripción NFATC/metabolismo , Acetilcolina/farmacología , Animales , Secuencia de Bases , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Cistationina gamma-Liasa/genética , Sulfuro de Hidrógeno/metabolismo , Hipoxia/enzimología , Masculino , Arterias Mesentéricas/citología , Arterias Mesentéricas/metabolismo , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/genética , Síndromes de la Apnea del Sueño/fisiopatología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA