Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Hum Cell ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38814518

Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-ßl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-ßl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.

2.
Talanta ; 272: 125772, 2024 May 15.
Article En | MEDLINE | ID: mdl-38367400

Hydrogen peroxide (H2O2) is a biomarker relevant for oxidative stress monitoring. Most chronic airway diseases are characterized by increased oxidative stress. To date, the main methods for the detection of this analyte are expensive and time-consuming laboratory techniques such as fluorometric and colorimetric assays. There is a growing interest in the development of electrochemical sensors for H2O2 detection due to their low cost, ease of use, sensitivity and rapid response. In this work, an electrochemical sensor based on gold nanowire arrays has been developed. Thanks to the catalytic activity of gold against hydrogen peroxide reduction and the high surface area of nanowires, this sensor allows the quantification of this analyte in a fast, efficient and selective way. The sensor was obtained by template electrodeposition and consists of gold nanowires about 5 µm high and with an average diameter of about 200 nm. The high active surface area of this electrode, about 7 times larger than a planar gold electrode, ensured a high sensitivity of the sensor (0.98 µA µM-1cm-2). The sensor allows the quantification of hydrogen peroxide in the range from 10 µM to 10 mM with a limit of detection of 3.2 µM. The sensor has excellent properties in terms of reproducibility, repeatability and selectivity. The sensor was validated by quantifying the hydrogen peroxide released by human airways A549 cells exposed or not to the pro-oxidant compound rotenone. The obtained results were validated by comparing them with those obtained by flow cytometry after staining the cells with the fluorescent superoxide-sensitive Mitosox Red probe giving a very good concordance.


Hydrogen Peroxide , Nanowires , Humans , Hydrogen Peroxide/chemistry , Nanowires/chemistry , Gold/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , Epithelial Cells , Electrodes
3.
Immunology ; 172(3): 329-342, 2024 Jul.
Article En | MEDLINE | ID: mdl-38354831

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Carbocysteine , Oxidative Stress , Respiratory Mucosa , Respiratory Tract Infections , Virus Diseases , Humans , Carbocysteine/therapeutic use , Carbocysteine/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Oxidative Stress/drug effects , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/drug effects , Virus Diseases/immunology , Virus Diseases/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy
5.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article En | MEDLINE | ID: mdl-38003276

Lung cancer frequently affects patients with Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS) fosters cancer progression by increasing oxidative stress and by modulating epithelial-mesenchymal transition (EMT) processes in cancer cells. Formoterol (FO), a long-acting ß2-agonist widely used for the treatment of COPD, exerts antioxidant activities. This study explored in a lung adenocarcinoma cell line (A549) whether FO counteracted the effects of cigarette smoke extract (CSE) relative to oxidative stress, inflammation, EMT processes, and cell migration and proliferation. A549 was stimulated with CSE and FO, ROS were evaluated by flow-cytometry and by nanostructured electrochemical sensor, EMT markers were evaluated by flow-cytometry and Real-Time PCR, IL-8 was evaluated by ELISA, cell migration was assessed by scratch and phalloidin test, and cell proliferation was assessed by clonogenic assay. CSE significantly increased the production of ROS, IL-8 release, cell migration and proliferation, and SNAIL1 expression but significantly decreased E-cadherin expression. FO reverted all these phenomena in CSE-stimulated A549 cells. The present study provides intriguing evidence that FO may exert anti-cancer effects by reverting oxidative stress, inflammation, and EMT markers induced by CS. These findings must be validated in future clinical studies to support FO as a valuable add-on treatment for lung cancer management.


Adenocarcinoma of Lung , Cigarette Smoking , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Epithelial-Mesenchymal Transition , Reactive Oxygen Species/metabolism , Formoterol Fumarate/metabolism , Formoterol Fumarate/pharmacology , Interleukin-8/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Adenocarcinoma of Lung/pathology , Nicotiana/metabolism , Lung Neoplasms/metabolism , Epithelial Cells/metabolism , Oxidative Stress , Inflammation/metabolism
6.
Cell Death Dis ; 14(11): 773, 2023 11 25.
Article En | MEDLINE | ID: mdl-38007509

Cigarette smoking impairs the lung innate immune response making smokers more susceptible to infections and severe symptoms. Dysregulation of cell death is emerging as a key player in chronic inflammatory conditions. We have recently reported that short exposure of human monocyte-derived macrophages (hMDMs) to cigarette smoke extract (CSE) altered the TLR4-dependent response to lipopolysaccharide (LPS). CSE caused inhibition of the MyD88-dependent inflammatory response and activation of TRIF/caspase-8/caspase-1 pathway leading to Gasdermin D (GSDMD) cleavage and increased cell permeability. Herein, we tested the hypothesis that activation of caspase-8 by CSE increased pro-inflammatory cell death of LPS-stimulated macrophages. To this purpose, we measured apoptotic and pyroptotic markers as well as the expression/release of pro-inflammatory mediators in hMDMs exposed to LPS and CSE, alone or in combination, for 6 and 24 h. We show that LPS/CSE-treated hMDMs, but not cells treated with CSE or LPS alone, underwent lytic cell death (LDH release) and displayed apoptotic features (activation of caspase-8 and -3/7, nuclear condensation, and mitochondrial membrane depolarization). Moreover, the negative regulator of caspase-8, coded by CFLAR gene, was downregulated by CSE. Activation of caspase-3 led to Gasdermin E (GSDME) cleavage. Notably, lytic cell death caused the release of the damage-associated molecular patterns (DAMPs) heat shock protein-60 (HSP60) and S100A8/A9. This was accompanied by an impaired inflammatory response resulting in inhibited and delayed release of IL6 and TNF. Of note, increased cleaved caspase-3, higher levels of GSDME and altered expression of cell death-associated genes were found in alveolar macrophages of smoker subjects compared to non-smoking controls. Overall, our findings show that CSE sensitizes human macrophages to cell death by promoting pyroptotic and apoptotic pathways upon encountering LPS. We propose that while the delayed inflammatory response may result in ineffective defenses against infections, the observed cell death associated with DAMP release may contribute to establish chronic inflammation. CS exposure sensitizes human macrophages to pro-inflammatory cell death. Upon exposure to LPS, CS inhibits the TLR4/MyD88 inflammatory response, downregulating the pro-inflammatory genes TNF and IL6 and the anti-apoptotic gene CFLAR, known to counteract caspase-8 activity. CS enhances caspase-8 activation through TLR4/TRIF, with a partial involvement of RIPK1, resulting on the activation of caspase-1/GSDMD axis leading to increased cell permeability and DAMP release through gasdermin pores [19]. At later timepoints caspase-3 becomes strongly activated by caspase-8 triggering apoptotic events which are associated with mitochondrial membrane depolarization, gasdermin E cleavage and secondary necrosis with consequent massive DAMP release.


Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Adaptor Proteins, Vesicular Transport/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Cell Death , Gasdermins , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Nicotiana/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
Entropy (Basel) ; 25(10)2023 Oct 10.
Article En | MEDLINE | ID: mdl-37895552

Biophotons are an ultra-weak emission of photons in the visible energy range from living matter. In this work, we study the emission from germinating seeds using an experimental technique designed to detect light of extremely small intensity. The emission from lentil seeds and single bean was analyzed during the whole germination process in terms of the different spectral components through low pass filters and the different count distributions in the various stages of the germination process. Although the shape of the emission spectrum appears to be very similar in the two samples used in our experiment, our analysis can highlight the differences present in the two cases. In this way, it was possible to correlate the various types of emissions to the degree of development of the seed during germination.

8.
Hum Cell ; 36(5): 1689-1702, 2023 Sep.
Article En | MEDLINE | ID: mdl-37308740

The impact of volcanic airborne products on airway epithelium homeostasis is largely unknown. This study assessed the effects of volcanic Fumarole Condensates (FC) alone or combined with Cigarette Smoke Extracts (CSE) on airway epithelial cells (16HBE and A549). Chemical composition of FC was analyzed by gas chromatography and HPLC. Cells were exposed to FC and IL-33 and IL-8 were assessed. The effects of FC and CSE on cell injury were evaluated assessing cell metabolism/cell viability, mitochondrial stress, cell apoptosis/cell necrosis, and cell proliferation. FC contained: water vapor (70-97%), CO2 (3-30%), acid gases (H2S, SO2, HCl, HF) around 1%. FC increased the intracellular IL-33 but differently modulated IL-33 and IL-8 gene expression and IL-8 release in the tested cell lines. FC without/with CSE: (a) increased cell metabolism/cell viability in 16HBE, while decreased it in A549; (b) increased mitochondrial stress in both cell types. FC with CSE increased cell necrosis in A549 in comparison to CSE alone. CSE reduced cell proliferation in 16HB,E while increased it in A549 and FC counteracted these effects in both cell types. Overall, FC induce a pro-inflammatory profile associated to a metabolic reprogramming without a relevant toxicity also in presence of CSE in airway epithelial cells.


Cigarette Smoking , Interleukin-33 , Humans , Interleukin-33/metabolism , Interleukin-33/pharmacology , Interleukin-8/metabolism , Epithelial Cells/metabolism , Necrosis/metabolism
9.
Pathol Res Pract ; 247: 154562, 2023 Jul.
Article En | MEDLINE | ID: mdl-37216746

Multiple myeloma (MM) is a plasma cells neoplasm which is often preceded by a preneoplastic condition called monoclonal gammopathy of unknown significance (MGUS). A protein called High-mobility group box-1 (HMGB-1) controls transcription and genomic stability. Both pro- and anti-tumor properties of HMGB1 have been described during tumor growth. The S100 protein family includes a protein known as psoriasin. Poorer prognosis and survival were linked to higher psoriasin expression in cancer patients. The goal of the current investigation was to compare the plasma levels of HMGB-1 and psoriasin in patients with MM and MGUS significance, as well as in a group of healthy controls. According to our research, patients with MGUS have higher HMGHB-1 concentrations than healthy controls (846.7 ± 287.6 pg/ml vs. 176.9 ± 204.8 pg/ml for controls, p < 0.001). Similarly, we found a huge difference in HMGB-1 levels for MM patients with respect to controls (928.0 ± 551.4 pg/ml vs. 176.9 ± 204.8 pg/ml; p = 0.001). No difference was found as for the Psoriasin levels in the three groups considered. Additionally, we tried to evaluate the knowledge already present in the literature about putative mechanisms of action for these molecules in the onset and development of these disorders.


HMGB1 Protein , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Paraproteinemias , Humans , S100 Calcium Binding Protein A7
10.
Pharmaceutics ; 15(4)2023 Apr 14.
Article En | MEDLINE | ID: mdl-37111733

Inhaled corticosteroids are the mainstay in the management of lung inflammation associated to chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Nonetheless, available inhalation products are mostly short-acting formulations that require frequent administrations and do not always produce the desired anti-inflammatory effects. In this work, the production of inhalable beclomethasone dipropionate (BDP) dry powders based on polymeric particles was attempted. As starting material, the PHEA-g-RhB-g-PLA-g-PEG copolymer was chosen, obtained by grafting 0.6, 2.4 and 3.0 mol%, respectively, of rhodamine (RhB), polylactic acid (PLA) and polyethylene glycol 5000 (PEG) on alpha,beta-poly(N-2-hydroxyethyl)DL-aspartamide (PHEA). The drug was loaded into the polymeric particles (MP) as an inclusion complex (CI) with hydroxypropyl-cyclodextrin (HP-ß-Cyd) (at a stoichiometric ratio of 1:1) or as free form. The spray-drying (SD) process to produce MPs was optimized by keeping the polymer concentration (0.6 wt/vol%) constant in the liquid feed and by varying other parameters such as the drug concentration. The theoretical aerodynamic diameter (daer) values among the MPs are comparable and potentially suitable for inhalation, as confirmed also through evaluation of the experimental mass median aerodynamic diameter (MMADexp). BDP shows a controlled release profile from MPs that is significantly higher (more than tripled) than from Clenil®. In vitro tests on bronchial epithelial cells (16HBE) and adenocarcinomic human alveolar basal epithelial cells (A549) showed that all the MP samples (empty or drug-loaded) were highly biocompatible. None of the systems used induced apoptosis or necrosis. Moreover, the BDP loaded into the particles (BDP-Micro and CI-Micro) was more efficient than free BDP to counteract the effects of cigarette smoke and LPS on release of IL-6 and IL-8.

11.
Antibiotics (Basel) ; 12(3)2023 Mar 14.
Article En | MEDLINE | ID: mdl-36978438

Macrophage polarization is a dynamic process through which macrophages acquire specific features whose extremes are represented by M1 and M2 polarization. Interleukin (IL)-6, IL-1ß, IL-12 and IL-8 belong to M1 macrophages while transforming growth factor-beta (TGF-ß belongs to M2 cytokines. M2 polarization prevalence is observed in allergic diseases. Tyndallization is a thermal process able to inactivate microorganisms and to allow their use for chronic respiratory disease treatment via immune response modulation. The present study explores the effects of a blend of tyndallized bacteria (TB) on macrophage polarization. THP-1-derived macrophages were exposed to different concentrations of TB (106, 5 × 106, 107, 5 × 107, 108 CFU/mL) and then cell viability and TB phagocytosis, and IL-8, IL-1ß, IL-6, IL-12 and TGF-ß1 gene expression and release were assessed. TB were tolerated, phagocyted and able to increase IL-8, IL-1ß and IL-6 gene expression and release IL-12 gene expression, as well as decrease TGF-ß1 gene expression and release. The effects on IL-8, IL-6 and TGF-ß1 release were confirmed in human monocyte-derived macrophages (hMDMs) exposed to TB. In conclusion, TB promote M1 polarization, and this mechanism might have valuable potential in controlling allergic diseases and infections, possibly preventing disease exacerbations.

12.
Biology (Basel) ; 12(1)2023 Jan 13.
Article En | MEDLINE | ID: mdl-36671825

Exposure to cigarette smoke, allergens, viruses, and other environmental contaminants, as well as a detrimental lifestyle, are the main factors supporting elevated levels of airway oxidative stress. Elevated oxidative stress results from an imbalance in reactive oxygen species (ROS) production and efficiency in antioxidant defense systems. Uncontrolled increased oxidative stress amplifies inflammatory processes and tissue damage and alters innate and adaptive immunity, thus compromising airway homeostasis. Oxidative stress events reduce responsiveness to corticosteroids. These events can increase risk of asthma into adolescence and prompt evolution of asthma toward its most severe forms. Development of new therapies aimed to restore oxidant/antioxidant balance and active interventions aimed to improve physical activity and quality/quantity of food are all necessary strategies to prevent asthma onset and avoid in asthmatics evolution toward severe forms of the disease.

13.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36296115

Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham's F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrodeposition. To reduce the electrode fouling by the medium, the effect of dilution was investigated using diluted (50% v/v in PBS) and undiluted media. With the same aim, two electrochemical techniques were employed, chronoamperometry (CH) and linear scan voltammetry (LSV). The influence of different interfering species and the effect of the operating temperature of 37 °C were also studied in order to simulate the operation of the sensor in the culture plate. The LSV technique made the sensor adaptable to undiluted media because the test time is short, compared with the CH technique, reducing the electrode fouling. The long-term stability of the sensors was also evaluated by testing different storage conditions. By storing the electrode at 4 °C, the sensor performance was not reduced for up to 21 days. The sensors were validated measuring H2O2 released by two different human bronchial epithelial cell lines (A549, 16HBE) and human primary bronchial epithelial cells (PBEC) grown in RPMI, MEM and BEGM/DMEM media. To confirm the results obtained with the sensor, the release of reactive oxygen species was also evaluated with a standard flow cytometry technique. The results obtained with the two techniques were very similar. Thus, the LSV technique permits using the proposed sensor for an effective oxidative stress quantification in different culture media and without dilution.

14.
Pharmaceutics ; 14(10)2022 Sep 29.
Article En | MEDLINE | ID: mdl-36297513

Lung cancer is one of the leading forms of cancer in developed countries. Interleukin-8 (IL-8), a pro-inflammatory cytokine, exerts relevant effects in cancer growth and progression, including angiogenesis and metastasis in lung cancer. Mesoporous silica particles, functionalized with newly extracted fish oil (Omeg@Silica), are more effective than the fish oil alone in anti-proliferative and pro-apoptotic effects in non-small cell lung cancer (NSCLC) cell lines. The mechanisms that explain this efficacy are not yet understood. The aim of the present study is therefore to decipher the anti-cancer effects of a formulation of Omeg@Silica in aqueous ethanol (FOS) in adenocarcinoma (A549) and muco-epidermoid (NCI-H292) lung cancer cells, evaluating cell migration, as well as IL-8, NF-κB, and miRNA-21 expression. Results show that in both cell lines, FOS was more efficient than oil alone, in decreasing cell migration and IL-8 gene expression. FOS reduced IL-8 protein release in both cell lines, but this effect was only stronger than the oil alone in A549. In A549, FOS was able to reduce miRNA-21 and transcription factor NF-κB nuclear expression. Taken together, these data support the potential use of the Omeg@Silica as an add-on therapy for NSCLC. Dedicated studies which prove clinical efficacy are needed.

15.
Antioxidants (Basel) ; 11(10)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36290742

Cigarette smoke (CS) induces oxidative stress and chronic inflammation in airway epithelium. It is a major risk factor for respiratory diseases, characterized by epithelial injury. The impact of CS on airway epithelial repair, which involves epithelial-mesenchymal transition (EMT) and the Notch-1 pathway, is incompletely understood. In this study, we used primary bronchial epithelial cells (PBECs) to evaluate the effect of CS on epithelial repair and these mechanisms. The effect of CS and/or TGF-beta1 on wound repair, various EMT and Notch-1 pathway markers and epithelial cell markers (TP63, SCGB1A) was assessed in PBECs cultured submerged, at the air-liquid interface (ALI) alone and in co-culture with fibroblasts. TGF-beta1 increased epithelial wound repair, activated EMT (shown by decrease in E-cadherin, and increases in vimentin, SNAIL1/SNAIL2/ZEB1), and increased Notch-1 pathway markers (NOTCH1/JAGGED1/HES1), MMP9, TP63, SCGB1A1. In contrast, CS decreased wound repair and vimentin, NOTCH1/JAGGED1/HES1, MMP9, TP63, SCGB1A1, whereas it activated the initial steps of the EMT (decrease in E-cadherin and increases in SNAIL1/SNAIL2/ZEB1). Using combined exposures, we observed that CS counteracted the effects of TGF-beta1. Furthermore, Notch signaling inhibition decreased wound repair. These data suggest that CS inhibits the physiological epithelial wound repair by interfering with the normal EMT process and the Notch-1 pathway.

16.
FASEB J ; 36(9): e22525, 2022 09.
Article En | MEDLINE | ID: mdl-36004615

Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.


Caspases, Initiator/metabolism , Cigarette Smoking , Inflammasomes , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Caspase 1/metabolism , Caspases/metabolism , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nicotiana/metabolism
17.
Pharmaceutics ; 14(6)2022 Jun 14.
Article En | MEDLINE | ID: mdl-35745833

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with a versatile and complicated profile, being the fourth most common single cause of death worldwide. Several research groups have been trying to identify possible therapeutic approaches to treat COPD, such as the use of mucoactive drugs, which include carbocysteine. However, their role in the treatment of patients suffering from COPD remains controversial due to COPD's multifaceted profile. In the present review, 72 articles, published in peer-reviewed journals with high impact factors, are analyzed in order to provide significant insight and increase the knowledge about COPD considering the important contribution of carbocysteine in reducing exacerbations via multiple mechanisms. Carbocysteine is in fact able to modulate mucins and ciliary functions, and to counteract viral and bacterial infections as well as oxidative stress, offering cytoprotective effects. Furthermore, carbocysteine improves steroid responsiveness and exerts anti-inflammatory activity. This analysis demonstrates that the use of carbocysteine in COPD patients represents a well-tolerated treatment with a favorable safety profile, and might contribute to a better quality of life for patients suffering from this serious illness.

18.
Antioxidants (Basel) ; 11(6)2022 Jun 11.
Article En | MEDLINE | ID: mdl-35740047

Carotenoids may have different effects on cancer and its progression. The safety of carotenoid supplements was evaluated in vitro on human non-small cell lung cancer (NSCLC) adenocarcinoma A549 cells by the administration of three different oleoresins containing lycopene and other lipophilic phytochemicals, such as tocochromanols. The oleoresins, obtained by the supercritical CO2 green extraction technology from watermelon (Lyc W), gac(Lyc G) and tomato (Lyc T) and chlatrated in α-cyclodextrins, were tested in comparison to synthetic lycopene (Lyc S), by cell cycle, Annexin V-FITC/PI, clonogenic test, Mytosox, intracellular ROS, Western Blot for NF-kB and RT-PCR and ELISA for IL-8. The extracts administered at the same lycopene concentration (10 µM) showed conflicting behaviors: Lyc W, with the highest lycopene/tocochromanols ratio, significantly increased cell apoptosis, mitochondrial stress, intracellular ROS, NF-kB and IL-8 expression and significantly decreased cell proliferation, whereas Lyc G and Lyc T significantly increased only cell proliferation. Lyc S treatment was ineffective. The highest amount of lycopene in Lyc W was able to counteract and revert the cell survival effect of tocochromanols supporting the importance of evaluating the lycopene bio-availability and the real effect of antioxidant tocochromanols' supplementation which may not only have no anticancer benefits but may even increase cancer aggressivity.

20.
Cells ; 11(5)2022 03 01.
Article En | MEDLINE | ID: mdl-35269471

In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).


HMGB1 Protein , Alarmins/metabolism , Animals , Autophagy , Chronic Disease , HMGB1 Protein/metabolism , Oxidative Stress
...