Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 198, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172570

RESUMEN

Global food production faces challenges in balancing the need for increased yields with environmental sustainability. This study presents a six-year field experiment in the North China Plain, demonstrating the benefits of diversifying traditional cereal monoculture (wheat-maize) with cash crops (sweet potato) and legumes (peanut and soybean). The diversified rotations increase equivalent yield by up to 38%, reduce N2O emissions by 39%, and improve the system's greenhouse gas balance by 88%. Furthermore, including legumes in crop rotations stimulates soil microbial activities, increases soil organic carbon stocks by 8%, and enhances soil health (indexed with the selected soil physiochemical and biological properties) by 45%. The large-scale adoption of diversified cropping systems in the North China Plain could increase cereal production by 32% when wheat-maize follows alternative crops in rotation and farmer income by 20% while benefiting the environment. This study provides an example of sustainable food production practices, emphasizing the significance of crop diversification for long-term agricultural resilience and soil health.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/análisis , Óxido Nitroso/análisis , Agricultura , Productos Agrícolas , Grano Comestible/química , Verduras , Zea mays , Triticum , China , Producción de Cultivos
2.
Environ Pollut ; 243(Pt B): 1113-1118, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30253302

RESUMEN

The widespread adoption of genetically modified, glyphosate-tolerant corn and soybean varieties in US crop production has led to a dramatic increase in glyphosate usage. Though present at or below regulatory limits currently set for human foodstuffs, the concentration of glyphosate in companion animal feed is currently unknown. In the present study, 18 commercial companion animal feeds from eight manufacturers were analyzed for glyphosate residues using ELISA. Every product contained detectable glyphosate residues in the range of 7.83 × 101-2.14 × 103 µg kg-1 dry weight, with the average and medians being 3.57 × 102 and 1.98 × 102 µg kg-1 respectively. Three products were tested for within-bag variation and six were tested for lot to lot variation. Little within-bag variation was found, but the concentration of glyphosate varied by lot in half of the products tested. Glyphosate concentration was significantly correlated with crude fiber content, but not crude fat or crude protein. Average daily intakes by animals consuming feeds containing the median glyphosate concentration are estimated to result in exposures that are 0.68-2.5% of the Allowable Daily Intake (ADI) for humans in the US and EU, which are 1750 and 500 µg kg-1 respectively. Consumption of the most contaminated feed, however, would result in exposure to 7.3% and 25% of the above ADIs, though the relevance of such an exposure to companion animals is currently unknown. Companion animal feeds contained 7.83 × 101-2.14 × 103 µg kg-1 glyphosate which is likely to result in pet exposure that is 4-12 times higher than that of humans on a per Kg basis.


Asunto(s)
Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Glicina/análogos & derivados , Herbicidas/análisis , Residuos de Plaguicidas/análisis , Animales , Contaminación de Alimentos/estadística & datos numéricos , Glicina/análisis , Humanos , Mascotas , Glycine max , Zea mays , Glifosato
3.
Front Plant Sci ; 8: 980, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642779

RESUMEN

In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle); peanuts → winter wheat-summer maize (PWS, 2-year cycle); ryegrass-cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle); and winter wheat-summer maize (WS, each year). We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm). They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

4.
PLoS One ; 10(1): e0115269, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25625765

RESUMEN

Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers.


Asunto(s)
Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Agua Subterránea , Ciclo Hidrológico , Agricultura , China , Lluvia , Estaciones del Año , Recursos Hídricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA