Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454456

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Gaucher Disease , Parkinson Disease , Animals , Mice , alpha-Synuclein/metabolism , Animals, Genetically Modified/metabolism , Gaucher Disease/genetics , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Lipids , Mutation , Parkinson Disease/metabolism
3.
Nat Neurosci ; 25(12): 1639-1650, 2022 12.
Article En | MEDLINE | ID: mdl-36396976

The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.


Dopaminergic Neurons , Ventral Tegmental Area , Animals , Mice , Astrocytes , Dopamine , Receptors, Dopamine D2
4.
Mol Psychiatry ; 27(10): 4201-4217, 2022 10.
Article En | MEDLINE | ID: mdl-35821415

The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.


Dopamine , Dysbindin , Schizophrenia , Animals , Mice , Astrocytes/metabolism , Basal Ganglia/metabolism , Dopamine/metabolism , Dysbindin/metabolism , Schizophrenia/genetics
5.
Nutrients ; 14(12)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35745108

Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer's disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut-brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aß(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.


Alzheimer Disease , Gastrointestinal Microbiome , Neuroprotective Agents , Alzheimer Disease/metabolism , Animals , Beer/analysis , Mice , Neuroprotective Agents/metabolism , Saccharomyces cerevisiae/metabolism
...