Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 20(22): 6485-98, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11707419

RESUMEN

The evolutionarily conserved yeast Mec1 and Tel1 protein kinases, as well as the Mec1-interacting protein Ddc2, are involved in the DNA damage checkpoint response. We show that regulation of Tel1 and Ddc2-Mec1 activities is important to modulate both activation and termination of checkpoint-mediated cell cycle arrest. In fact, overproduction of either Tel1 or Ddc2 causes a prolonged cell cycle arrest and cell death in response to DNA damage, impairing the ability of cells to recover from checkpoint activation. This cell cycle arrest is independent of Mec1 in UV-irradiated Tel1-overproducing cells, while it is strictly Mec1 dependent in similarly treated DDC2-overexpressing cells. The Rad53 checkpoint kinase is instead required in both cases for cell cycle arrest, which correlates with its enhanced and persistent phosphorylation, suggesting that unscheduled Rad53 phosphorylation might prevent cells from re-entering the cell cycle after checkpoint activation. In addition, Tel1 overproduction results in transient nuclear division arrest and concomitant Rad53 phosphorylation in the absence of exogenous DNA damage independently of Mec1 and Ddc1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales , Antineoplásicos/farmacología , Ciclo Celular , Muerte Celular , Núcleo Celular/metabolismo , Separación Celular , Quinasa de Punto de Control 2 , Reparación del ADN , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Fase G2 , Galactosa/metabolismo , Genotipo , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular , Cinética , Metilmetanosulfonato/farmacología , Mitosis , Mutágenos/farmacología , Nocodazol/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Rayos Ultravioleta
2.
Mol Cell Biol ; 21(12): 3913-25, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11359899

RESUMEN

DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show that mec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Delta cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G(1) or during S phase. Conversely, an excess of Mec1kd in MEC1 cells does not abrogate the G(2)/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G(1)/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G(2). The finding that these mutants, although indistinguishable from mec1Delta cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.


Asunto(s)
Daño del ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Mutación , Proteínas de Saccharomyces cerevisiae , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo Celular/efectos de la radiación , Secuencia Conservada , Cartilla de ADN/genética , Reparación del ADN , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas Fúngicas/química , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Mutágenos/toxicidad , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Homología de Secuencia de Aminoácido , Rayos Ultravioleta
3.
Genes Dev ; 14(16): 2046-59, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10950868

RESUMEN

DDC2 is a novel component of the DNA integrity checkpoint pathway, which is required for proper checkpoint response to DNA damage and to incomplete DNA replication. Moreover, Ddc2 overproduction causes sensitivity to DNA-damaging agents and checkpoint defects. Ddc2 physically interacts with Mec1 and undergoes Mec1-dependent phosphorylation both in vitro and in vivo. The phosphorylation of Ddc2 takes place in late S phase and in G(2) phase during an unperturbed cell cycle and is further increased in response to DNA damage. Because Ddc2 phosphorylation does not require any other known tested checkpoint factors but Mec1, the Ddc2-Mec1 complex might respond to the presence of some DNA structures independently of the other known checkpoint proteins. Our findings suggest that Ddc2 may be the functional homolog of Schizosaccharomyces pombe Rad26, strengthening the hypothesis that the mechanisms leading to checkpoint activation are conserved throughout evolution.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inhibidores Enzimáticos , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Muerte Celular/genética , Cartilla de ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas
4.
Genetics ; 155(4): 1577-91, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10924458

RESUMEN

A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.


Asunto(s)
Inhibidores Enzimáticos , Silenciador del Gen , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/genética , Saccharomycetales/metabolismo , Telómero/genética , Southern Blotting , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Cromatina/genética , Daño del ADN/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN , Proteínas Fúngicas/genética , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Mutación , Proteínas Nucleares , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Proteínas Quinasas/genética , Telómero/fisiología , Transcripción Genética
5.
Nat Genet ; 21(2): 204-8, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9988274

RESUMEN

The yeast protein Set1p, inactivation of which alleviates telomeric position effect (TPE), contains a conserved SET domain present in chromosomal proteins involved in epigenetic control of transcription. Mec3p is required for efficient DNA-damage-dependent checkpoints at G1/S, intra-S and G2/M (refs 3-7). We show here that the SET domain of Set1p interacts with Mec3p. Deletion of SET1 increases the viability of mec3delta mutants after DNA damage (in a process that is mostly independent of Rad53p kinase, which has a central role in checkpoint control) but does not significantly affect cell-cycle progression. Deletion of MEC3 enhances TPE and attenuates the Set1delta-induced silencing defect. Furthermore, restoration of TPE in a Set1delta mutant by overexpression of the isolated SET domain requires Mec3p. Finally, deletion of MEC3 results in telomere elongation, whereas cells with deletions of both SET1 and MEC3 do not have elongated telomeres. Our findings indicate that interactions between SET1 and MEC3 have a role in DNA repair and telomere function.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Reparación del ADN/fisiología , Proteínas Fúngicas/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae , Telómero/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Proteínas/genética , Saccharomyces cerevisiae , Factores de Transcripción
6.
EMBO J ; 17(14): 4199-209, 1998 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9670034

RESUMEN

Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/metabolismo , Securina
7.
EMBO J ; 16(17): 5216-26, 1997 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9311982

RESUMEN

The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Delta mutants are defective in delaying G1-S and G2-M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Delta strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Daño del ADN , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Epistasis Genética , Glicoproteínas/farmacología , Hidroxiurea/farmacología , Metilmetanosulfonato , Mutagénesis , Mutágenos/farmacología , Periodicidad , Fosfoproteínas/metabolismo , Fosforilación , Supresión Genética , Rayos Ultravioleta/efectos adversos
8.
EMBO J ; 16(3): 639-50, 1997 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-9034345

RESUMEN

The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN/genética , Replicación del ADN/genética , Proteínas Serina-Treonina Quinasas , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Western Blotting , Ciclo Celular/genética , Quinasa de Punto de Control 2 , ADN/biosíntesis , ADN Primasa , Estabilidad de Enzimas/genética , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Interfase/genética , Metilmetanosulfonato/farmacología , Mitosis/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida/genética , Mutágenos/farmacología , Mutación/genética , Fosforilación , Proteínas Quinasas , ARN Nucleotidiltransferasas/genética , Fase S/genética , Saccharomyces cerevisiae/genética , Temperatura , Rayos Ultravioleta/efectos adversos
9.
Nucleic Acids Res ; 24(18): 3533-7, 1996 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-8836179

RESUMEN

The rfa1-M2 and rfa1-M4 Saccharomyces cerevisiae mutants, which are altered in the 70 kDa subunit of replication protein A (RPA) and sensitive to UV and methyl methane sulfonate (MMS), have been analyzed for possible checkpoint defects. The G1/S and intra-S DNA damage checkpoints are defective in the rfa1-M2 mutant, since rfa1-M2 cells fail to properly delay cell cycle progression in response to UV irradiation in G1 and MMS treatment during S phase. Conversely, the G2/M DNA damage checkpoint and the S/M checkpoint are proficient in rfa1-M2 cells and all the checkpoints tested are functional in the rfa1-M4 mutant. Preventing S phase entry by alpha-factor treatment after UV irradiation in G1 does not change rfa1-M4 cell lethality, while it allows partial recovery of rfa1-M2 cell viability. Therefore, the hypersensitivity to UV and MMS treatments observed in the rfa1-M4 mutant might only be due to impairment of RPA function in DNA repair, while the rfa1-M2 mutation seems to affect both the DNA repair and checkpoint functions of Rpa70.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/química , Fase G1 , Fase S , Saccharomyces cerevisiae/genética , Células Cultivadas , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Metilmetanosulfonato/farmacología , Peso Molecular , Mutagénesis Sitio-Dirigida , Mutágenos/farmacología , Nocodazol/metabolismo , Proteína de Replicación A , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Relación Estructura-Actividad , Rayos Ultravioleta
10.
Scand J Clin Lab Invest Suppl ; 203: 97-105, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-2128564

RESUMEN

We investigated the repeatability and the clinical usefulness of assessing several parameters related to oxygen status in arterial blood. pH, PaCO2, PaO2, oxygen saturation, total hemoglobin concentration, and fractions of carboxy- and methemoglobin were measured in arterial blood. Applying a new algorithm, other parameters were calculated from the above mentioned, among which total oxygen concentration, half saturation tension, 2,3-DPG concentration, uncompensated mixed venous oxygen tension, and cardiac oxygen compensation factor. In 12 subjects we performed three simultaneous determinations of these indices with a good repeatability of the measures. Then, we examined the same parameters in 92 subjects with normal PaO2, 52 patients with respiratory failure (38 normocapnic and 14 hypercapnic), 9 of which were monitored to follow the behaviour of the measures with time according to variations of the clinical status, and in 12 subjects before and after exercise. We found that important alterations in oxygen transport and delivery may be present even when oxygen tension in arterial blood is normal. Furthermore, oxygen status of arterial blood in respiratory failure may be affected by several factors, whose knowledge is essential for a proper treatment. Our data suggest that such an approach to the evaluation of oxygen status offers interesting clinical perspectives.


Asunto(s)
Análisis de los Gases de la Sangre , Oxígeno/sangre , 2,3-Difosfoglicerato , Adolescente , Adulto , Anciano , Arterias , Dióxido de Carbono/sangre , Carboxihemoglobina/metabolismo , Ácidos Difosfoglicéricos/sangre , Ejercicio Físico/fisiología , Femenino , Hemoglobinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Metahemoglobina/metabolismo , Persona de Mediana Edad , Valores de Referencia , Insuficiencia Respiratoria/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...