Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immun Ageing ; 20(1): 20, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170231

RESUMEN

BACKGROUND: Current influenza vaccines deliver satisfactory results in young people but are less effective in the elderly. Development of vaccines for an ever-increasing aging population has been an arduous challenge due to immunosenescence that impairs the immune response in the aged, both quantitatively and qualitatively. RESULTS: To potentially enhance vaccine efficacy in the elderly, we investigated the immunogenicity and cross-protection of influenza hemagglutinin virus-like particles (HA-VLP) incorporated with glycosylphosphatidylinositol (GPI)-anchored cytokine-adjuvants (GPI-GM-CSF and GPI-IL-12) via protein transfer in aged mice. Lung viral replication against homologous and heterologous influenza viruses was significantly reduced in aged mice after vaccination with cytokine incorporated VLPs (HA-VLP-Cyt) in comparison to HA-VLP alone. Enhanced IFN-γ+CD4+ and IFN-γ+CD8+ T cell responses were also observed in aged mice immunized with HA-VLP-Cyt when compared to HA-VLP alone. CONCLUSIONS: Cytokine-adjuvanted influenza HA-VLP vaccine induced enhanced protective response against homologous influenza A virus infection in aged mice. Influenza HA-VLP vaccine with GPI-cytokines also induced enhanced T cell responses correlating with better protection against heterologous infection in the absence of neutralizing antibodies. The results suggest that a vaccination strategy using cytokine-adjuvanted influenza HA-VLPs could be used to enhance protection against influenza A virus in the elderly.

2.
Vaccines (Basel) ; 10(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35746552

RESUMEN

Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since millions of people are exposed to influenza virus and SARS-CoV-2, it is of great interest to develop a two-in-one vaccine that will be able to protect against infection of both viruses. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that a hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.

3.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34815353

RESUMEN

BACKGROUND: PD-L1 is one of the major immune checkpoints which limits the effectiveness of antitumor immunity. Blockade of PD-L1/PD-1 has been a major improvement in the treatment of certain cancers, however, the response rate to checkpoint blockade remains low suggesting a need for new therapies. Metformin has emerged as a potential new drug for the treatment of cancer due to its effects on PD-L1 expression, T cell responses, and the immunosuppressive environment within tumors. While the benefits of metformin in combination with checkpoint blockade have been reported in animal models, little remains known about its effect on other types of immunotherapy. METHODS: Vaccine immunotherapy and metformin were administered to mice inoculated with tumors to investigate the effect of metformin and TMV vaccine on tumor growth, metastasis, PD-L1 expression, immune cell infiltration, and CD8 T cell phenotype. The effect of metformin on IFN-γ induced PD-L1 expression in tumor cells was assessed by flow cytometry, western blot, and RT-qPCR. RESULTS: We observed that tumors that respond to metformin and vaccine immunotherapy combination show a reduction in surface PD-L1 expression compared with tumor models that do not respond to metformin. In vitro assays showed that the effect of metformin on tumor cell PD-L1 expression was mediated in part by AMP-activated protein kinase signaling. Vaccination results in increased T cell infiltration in all tumor models, and this was not further enhanced by metformin. However, we observed an increased number of CD8 T cells expressing PD-1, Ki-67, Tim-3, and CD62L as well as increased effector cytokine production after treatment with metformin and tumor membrane vesicle vaccine. CONCLUSIONS: Our data suggest that metformin can synergize with vaccine immunotherapy to augment the antitumor response through tumor-intrinsic mechanisms and also alter the phenotype and function of CD8 T cells within the tumor, which could provide insights for its use in the clinic.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Hipoglucemiantes/uso terapéutico , Inmunoterapia/métodos , Metformina/uso terapéutico , Animales , Antígeno B7-H1 , Vacunas contra el Cáncer/farmacología , Femenino , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones
4.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445092

RESUMEN

Dendritic cells (DCs) are the most effective antigen presenting cells for the development of T cell responses. The only FDA approved DC-based immunotherapy to date is Sipuleucel-T, which utilizes a fusion protein to stimulate DCs ex vivo with GM-CSF and simultaneously deliver the antigen PAP for prostate cancer. This approach is restricted by the breadth of immunity elicited to a single antigen, and to cancers that have a defined tumor associated antigen. Other multi-antigen approaches have been restricted by poor efficacy of vaccine adjuvants. We have developed a vaccine platform that consists of autologous DCs pulsed with cytokine-adjuvanted tumor membrane vesicles (TMVs) made from tumor tissue, that encapsulate the antigenic landscape of individual tumors. Here we test the efficacy of DCs pulsed with TMVs incorporated with glycolipid-anchored immunostimulatory molecules (GPI-ISMs) in HER2-positive and triple negative breast cancer murine models. Pulsing of DCs with TMVs containing GPI-ISMs results in superior uptake of vesicles, DC activation and cytokine production. Adaptive transfer of TMV-pulsed DCs to tumor bearing mice results in the inhibition of tumor growth, reduction in lung metastasis, and an increase in immune cell infiltration into the tumors. These observations suggest that DCs pulsed with TMVs containing GPI-GM-CSF and GPI-IL-12 can be further developed to be used as a personalized immunotherapy platform for cancer treatment.


Asunto(s)
Antígenos de Neoplasias/inmunología , Citocinas/inmunología , Células Dendríticas/inmunología , Receptor ErbB-2/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Traslado Adoptivo , Animales , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Receptor ErbB-2/análisis , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología
5.
Hum Vaccin Immunother ; 16(12): 3184-3193, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32530786

RESUMEN

Triple-negative breast cancer (TNBC) afflicts women at a younger age than other breast cancers and is associated with a worse clinical outcome. This poor clinical outcome is attributed to a lack of defined targets and patient-to-patient heterogeneity in target antigens and immune responses. To address such heterogeneity, we tested the efficacy of a personalized vaccination approach for the treatment of TNBC using the 4T1 murine TNBC model. We isolated tumor membrane vesicles (TMVs) from homogenized 4T1 tumor tissue and incorporated glycosyl phosphatidylinositol (GPI)-anchored forms of the immunostimulatory B7-1 (CD80) and IL-12 molecules onto these TMVs to make a TMV vaccine. Tumor-bearing mice were then administered with the TMV vaccine either alone or in combination with immune checkpoint inhibitors. We show that TMV-based vaccine immunotherapy in combination with anti-CTLA-4 mAb treatment upregulated immunomodulatory cytokines in the plasma, significantly improved survival, and reduced pulmonary metastasis in mice compared to either therapy alone. The depletion of CD8+ T cells, but not CD4+ T cells, resulted in the loss of efficacy. This suggests that the vaccine acts via tumor-specific CD8+ T cell immunity. These results suggest TMV vaccine immunotherapy as a potential enhancer of immune checkpoint inhibitor therapies for metastatic triple-negative breast cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias de la Mama Triple Negativas , Animales , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4 , Línea Celular Tumoral , Humanos , Inmunoterapia , Interleucina-12 , Ratones , Neoplasias de la Mama Triple Negativas/terapia
6.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295135

RESUMEN

Immune checkpoint inhibitor (ICI) immunotherapy improved the survival of head and neck squamous cell carcinoma (HNSCC) patients. However, more than 80% of the patients are still resistant to this therapy. To test whether the efficacy of ICI therapy can be improved by vaccine-induced immunity, we investigated the efficacy of a tumor membrane-based vaccine immunotherapy in murine models of HNSCC. The tumors, grown subcutaneously, are used to prepare tumor membrane vesicles (TMVs). TMVs are then incorporated with glycolipid-anchored immunostimulatory molecules GPI-B7-1 and GPI-IL-12 by protein transfer to generate the TMV vaccine. This TMV vaccine inhibited tumor growth and improved the survival of mice challenged with SCCVII tumor cells. The tumor-free mice survived for several months, remained tumor-free, and were protected following a secondary tumor cell challenge, suggesting that the TMV vaccine induced an anti-tumor immune memory response. However, no synergy with anti-PD1 mAb was observed in this model. In contrast, the TMV vaccine was effective in inhibiting MOC1 and MOC2 murine oral cancer models and synergized with anti-PD1 mAb in extending the survival of tumor-bearing mice. These observations suggest that tumor tissue based TMV vaccines can be harnessed to develop an effective personalized immunotherapy for HNSCC that can enhance the efficacy of immune checkpoint inhibitors.

7.
Biomaterials ; 74: 231-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26461116

RESUMEN

Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos/química , Glucolípidos/química , Neoplasias/terapia , Animales , Células CHO , Membrana Celular/química , Cricetinae , Cricetulus , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología
8.
J Immunol ; 188(9): 4340-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22447978

RESUMEN

Repetitive Ag encounter, coupled with dynamic changes in Ag density and inflammation, imparts phenotypic and functional heterogeneity to memory virus-specific CD8 T cells in persistently infected hosts. For herpesvirus infections, which cycle between latency and reactivation, recent studies demonstrate that virus-specific T cell memory is predominantly derived from naive precursors recruited during acute infection. Whether functional memory T cells to viruses that persist in a nonlatent, low-level infectious state (smoldering infection) originate from acute infection-recruited naive T cells is not known. Using mouse polyomavirus (MPyV) infection, we previously showed that virus-specific CD8 T cells in persistently infected mice are stably maintained and functionally competent; however, a sizeable fraction of these memory T cells are short-lived. Further, we found that naive anti-MPyV CD8 T cells are primed de novo during persistent infection and contribute to maintenance of the virus-specific CD8 T cell population and its phenotypic heterogeneity. Using a new MPyV-specific TCR-transgenic system, we now demonstrate that virus-specific CD8 T cells recruited during persistent infection possess multicytokine effector function, have strong replication potential, express a phenotype profile indicative of authentic memory capability, and are stably maintained. In contrast, CD8 T cells recruited early in MPyV infection express phenotypic and functional attributes of clonal exhaustion, including attrition from the memory pool. These findings indicate that naive virus-specific CD8 T cells recruited during persistent infection contribute to preservation of functional memory against a smoldering viral infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Infecciones por Polyomavirus/inmunología , Poliomavirus/inmunología , Infecciones Tumorales por Virus/inmunología , Animales , Ratones , Ratones Noqueados , Infecciones por Polyomavirus/genética , Infecciones Tumorales por Virus/genética
9.
J Virol ; 85(19): 10126-34, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775464

RESUMEN

Human polyomaviruses are associated with substantial morbidity in immunocompromised patients, including those with HIV/AIDS, recipients of bone marrow and kidney transplants, and individuals receiving immunomodulatory agents for autoimmune and inflammatory diseases. No effective antipolyomavirus agents are currently available, and no host determinants have been identified to predict susceptibility to polyomavirus-associated diseases. Using the mouse polyomavirus (MPyV) infection model, we recently demonstrated that perforin-granzyme exocytosis, tumor necrosis factor alpha (TNF-α), and Fas did not contribute to control of infection or virus-induced tumors. Gamma interferon (IFN-γ) was recently shown to inhibit replication by human BK polyomavirus in primary cultures of renal tubular epithelial cells. In this study, we provide evidence that IFN-γ is an important component of the host defense against MPyV infection and tumorigenesis. In immortalized and primary cells, IFN-γ reduces expression of MPyV proteins and impairs viral replication. Mice deficient for the IFN-γ receptor (IFN-γR(-/-)) maintain higher viral loads during MPyV infection and are susceptible to MPyV-induced tumors; this increased viral load is not associated with a defective MPyV-specific CD8(+) T cell response. Using an acute MPyV infection kidney transplant model, we further show that IFN-γR(-/-) donor kidneys harbor higher MPyV levels than donor kidneys from wild-type mice. Finally, administration of IFN-γ to persistently infected mice significantly reduces MPyV levels in multiple organs, including the kidney, a major reservoir for persistent mouse and human polyomavirus infections. These findings demonstrate that IFN-γ is an antiviral effector molecule for MPyV infection.


Asunto(s)
Interferón gamma/inmunología , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/patología , Poliomavirus/inmunología , Poliomavirus/patogenicidad , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Interferón gamma/administración & dosificación , Riñón/inmunología , Riñón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Carga Viral , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
10.
J Immunol ; 185(3): 1692-700, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20622115

RESUMEN

Virus-specific CD4(+) T cells optimize antiviral responses by providing help for antiviral humoral responses and CD8(+) T cell differentiation. Although CD4(+) T cell responses to viral infections that undergo complete clearance have been studied extensively, less is known about virus-specific CD4(+) T cell responses to viruses that persistently infect their hosts. Using a mouse polyomavirus (MPyV) infection model, we previously demonstrated that CD4(+) T cells are essential for recruiting naive MPyV-specific CD8(+) T cells in persistently infected mice. In this study, we defined two dominant MPyV-specific CD4(+) T cell populations, one directed toward an epitope derived from the nonstructural large T Ag and the other from the major viral capsid protein of MPyV. These MPyV-specific CD4(+) T cells vary in terms of their magnitude, functional profile, and phenotype during acute and persistent phases of infection. Using a minimally myeloablative-mixed bone marrow chimerism approach, we further show that naive virus-specific CD4(+) T cells, like anti-MPyV CD8(+) T cells, are primed de novo during persistent virus infection. In summary, these findings reveal quantitative and qualitative differences in the CD4(+) T cell response to a persistent virus infection and demonstrate that naive antiviral CD4(+) T cells are recruited during chronic polyomavirus infection.


Asunto(s)
Antígenos Transformadores de Poliomavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas de la Cápside/inmunología , Movimiento Celular/inmunología , Epítopos de Linfocito T/inmunología , Infecciones por Polyomavirus/inmunología , Animales , Antígenos Virales de Tumores/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Enfermedad Crónica , Femenino , Ratones , Ratones Endogámicos C57BL , Poliomavirus/crecimiento & desarrollo , Poliomavirus/inmunología , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA