Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575147

RESUMEN

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Asunto(s)
Micorrizas , Micorrizas/genética , Árboles/microbiología , Filogenia , Biodiversidad , Hongos/genética , Plantas/microbiología , Suelo , Microbiología del Suelo
3.
Sci Total Environ ; 817: 152973, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007591

RESUMEN

To evaluate the impact of stand age on the ecosystem's C budget, as well as the post-harvest recovery of the C storages and fluxes, a chronosequence of Scots pine stands from the clear-cut stage up to the age of 110 years was studied. An age-related trend of net primary production (NPP) demonstrated effective C accumulation in the young and middle-aged stands and their levelling out thereafter. The understorey vegetation contributed 8-46% to total NPP, being lower in the pole and middle-aged stands, but without a clear age related trend. Annual cumulative soil heterotrophic respiration (Rh) demonstrated stable values along the chronosequence, varying between 3.8 and 5.4 t C ha-1 yr-1. The Rh flux of 2.9 t C ha-1 yr-1 at the clear-cut site did not exceed the corresponding value for stands. The NEP along the chronosequence followed the dynamics of the annual biomass production of the trees, peaking at the middle-aged stage and decreasing in the older stands; the NPP of the trees was the main driver directing the dynamics of NEP. There was no significant correlation between Rh and dynamics of aboveground litter or fine root production, which can partly explain why no relationship was established between annual Rh and stand age. The total ecosystem C stocks followed the same trend as cumulative tree biomass, peaking in the older stands, however, the soil C stocks varied along the chronosequence irrespective of stand age. The post-harvest C compensation point was reached at the age of 7-years and C payback occurred at a stand age of 11-12 years. Stands acted as C accumulating ecosystems and average annual C accumulation was around 2.5 t C ha-1 yr-1, except for the youngest stand and the clear-cut area which acted as C sources. In the oldest stand C budget was almost balanced, with a modest annual accumulation of 0.12 t C ha-1 yr-1.


Asunto(s)
Pinus sylvestris , Pinus , Carbono , Ecosistema , Suelo , Árboles
4.
J Fungi (Basel) ; 7(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436173

RESUMEN

Diplodia sapinea is a cosmopolitan endophyte and opportunistic pathogen having occurred on several conifer species in Europe for at least 200 years. In Europe, disease outbreaks have increased on several Pinus spp. in the last few decades. In this study, the genetic structure of the European and western Asian D. sapinea population were investigated using 13 microsatellite markers. In total, 425 isolates from 15 countries were analysed. A high clonal fraction and low genetic distance between most subpopulations was found. One single haplotype dominates the European population, being represented by 45.3% of all isolates and found in nearly all investigated countries. Three genetically distinct subpopulations were found: Central/North European, Italian and Georgian. The recently detected subpopulations of D. sapinea in northern Europe (Estonia) share several haplotypes with the German subpopulation. The northern European subpopulations (Latvia, Estonia and Finland) show relatively high genetic diversity compared to those in central Europe suggesting either that the fungus has existed in the North in an asymptomatic/endophytic mode for a long time or that it has spread recently by multiple introductions. Considerable genetic diversity was found even among isolates of a single tree as 16 isolates from a single tree resulted in lower clonal fraction index than most subpopulations in Europe, which might reflect cryptic sexual proliferation. According to currently published allelic patterns, D. sapinea most likely originates from North America or from some unsampled population in Asia or central America. In order to enable the detection of endophytic or latent infections of planting stock by D. sapinea, new species-specific PCR primers (DiSapi-F and Diplo-R) were designed. During the search for Diplodia isolates across the world for species specific primer development, we identified D. africana in California, USA, and in the Canary Islands, which are the first records of this species in North America and in Spain.

5.
Front Microbiol ; 11: 1953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013735

RESUMEN

Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA