Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
medRxiv ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38529492

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

2.
NPJ Parkinsons Dis ; 10(1): 12, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191886

Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.

3.
Sci Transl Med ; 15(711): eabo1557, 2023 08 30.
Article En | MEDLINE | ID: mdl-37647388

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.


DNA, Mitochondrial , Parkinson Disease , Humans , Animals , Mice , Rats , DNA, Mitochondrial/genetics , Parkinson Disease/genetics , Leukocytes, Mononuclear , Mitochondria , DNA Damage
4.
NPJ Parkinsons Dis ; 9(1): 104, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37393318

Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.

5.
Commun Med (Lond) ; 3(1): 64, 2023 May 10.
Article En | MEDLINE | ID: mdl-37165152

BACKGROUND: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been recognized as genetic risk factors for Parkinson's disease (PD). However, compared to cancer, fewer genetic mutations contribute to the cause of PD, propelling the search for protein biomarkers for early detection of the disease. METHODS: Utilizing 138 urine samples from four groups, healthy individuals (control), healthy individuals with G2019S mutation in the LRRK2 gene (non-manifesting carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S mutation (LRRK2 PD), we applied a proteomics strategy to determine potential diagnostic biomarkers for PD from urinary extracellular vesicles (EVs). RESULTS: After efficient isolation of urinary EVs through chemical affinity followed by mass spectrometric analyses of EV peptides and enriched phosphopeptides, we identify and quantify 4476 unique proteins and 2680 unique phosphoproteins. We detect multiple proteins and phosphoproteins elevated in PD EVs that are known to be involved in important PD pathways, in particular the autophagy pathway, as well as neuronal cell death, neuroinflammation, and formation of amyloid fibrils. We establish a panel of proteins and phosphoproteins as novel candidates for disease biomarkers and substantiate the biomarkers using machine learning, ROC, clinical correlation, and in-depth network analysis. Several putative disease biomarkers are further partially validated in patients with PD using parallel reaction monitoring (PRM) and immunoassay for targeted quantitation. CONCLUSIONS: These findings demonstrate a general strategy of utilizing biofluid EV proteome/phosphoproteome as an outstanding and non-invasive source for a wide range of disease exploration.


Parkinson's disease (PD) is a progressive neurological disorder that affects body movement because some brain cells stop producing the chemical dopamine. PD is often not diagnosed until it has advanced, making early detection crucial. To enable early detection, we investigated tiny packages called extracellular vesicles released from a variety of cells, including the brain cells, that can be found in urine as a potential source for diagnosing PD. These tiny packages contain different kinds of molecules from inside the cells. We analyzed urine samples from 138 individuals and found several proteins involved in PD development that could be biological indicators for early detection of the disease. We used various techniques to make sure that our findings were accurate. Our study suggests that looking at these proteins in urine could be a good way to detect PD in a non-invasive manner.

6.
NPJ Parkinsons Dis ; 9(1): 52, 2023 Apr 04.
Article En | MEDLINE | ID: mdl-37015928

Elevated urine bis(monoacylglycerol)phosphate (BMP) levels have been found in gain-of-kinase function LRRK2 G2019S mutation carriers. Here, we have expanded urine BMP analysis to other Parkinson's disease (PD) associated mutations and found them to be consistently elevated in carriers of LRRK2 G2019S and R1441G/C as well as VPS35 D620N mutations. Urine BMP levels are promising biomarkers for patient stratification and potentially target engagement in clinical trials of emerging targeted PD therapies.

7.
Mov Disord ; 38(2): 286-303, 2023 02.
Article En | MEDLINE | ID: mdl-36692014

BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Parkinson Disease/genetics , Mutation
8.
Biochem J ; 479(17): 1759-1783, 2022 09 16.
Article En | MEDLINE | ID: mdl-35950872

Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.


Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Microtubules/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Protein Binding
10.
Cell Rep Med ; 3(6): 100661, 2022 06 21.
Article En | MEDLINE | ID: mdl-35732154

Parkinson's disease (PD) is a growing burden worldwide, and there is no reliable biomarker used in clinical routines to date. Cerebrospinal fluid (CSF) is routinely collected in patients with neurological symptoms and should closely reflect alterations in PD patients' brains. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomics workflow for CSF proteome profiling. From two independent cohorts with over 200 individuals, our workflow reproducibly quantifies over 1,700 proteins from minimal CSF amounts. Machine learning determines OMD, CD44, VGF, PRL, and MAN2B1 to be altered in PD patients or to significantly correlate with clinical scores. We also uncover signatures of enhanced neuroinflammation in LRRK2 G2019S carriers, as indicated by increased levels of CTSS, PLD4, and HLA proteins. A comparison with our previously acquired urinary proteomes reveals a large overlap in PD-associated changes, including lysosomal proteins, opening up new avenues to improve our understanding of PD pathogenesis.


Parkinson Disease , Biomarkers/cerebrospinal fluid , Heterozygote , Humans , Parkinson Disease/diagnosis , Proteome/metabolism , Proteomics/methods
12.
Mov Disord ; 37(5): 1004-1015, 2022 05.
Article En | MEDLINE | ID: mdl-35049090

BACKGROUND: The clinicopathological phenotype of G2019S LRRK2-associated Parkinson's disease (L2PD) is similar to idiopathic Parkinson's disease (iPD), and G2019S LRRK2 nonmanifesting carriers (L2NMCs) are at increased risk for development of PD. With various therapeutic strategies in the clinical and preclinical pipeline, there is an urgent need to identify biomarkers that can aid early diagnosis and patient enrichment for ongoing and future LRRK2-targeted trials. OBJECTIVE: The objective of this work was to investigate differential protein and phospho-protein changes related to G2019S mutant LRRK2 in peripheral blood mononuclear cells from G2019S L2PD patients and G2019S L2NMCs, identify specific phospho-protein changes associated with the G2019S mutation and with disease status, and compare findings with patients with iPD. METHODS: We performed an unbiased phospho-proteomic study by isobaric label-based mass spectrometry using peripheral blood mononuclear cell group pools from a LRRK2 cohort from Spain encompassing patients with G2019S L2PD (n = 20), G2019S L2NMCs (n = 20), healthy control subjects (n = 30), patients with iPD (n = 15), patients with R1441G L2PD (n = 5), and R1441G L2NMCs (n = 3) (total N = 93). RESULTS: Comparing G2019S carriers with healthy controls, we identified phospho-protein changes associated with the G2019S mutation. Moreover, we uncovered a specific G2019S phospho-signature that changes with disease status and can discriminate patients with G2019S L2PD, G2019S L2NMCs, and healthy controls. Although patients with iPD showed a differential phospho-proteomic profile, biological enrichment analyses revealed similar changes in deregulated pathways across the three groups. CONCLUSIONS: We found a differential phospho-signature associated with LRRK2 G2019S for which, consistent with disease status, the phospho-profile from PD at-risk G2019S L2NMCs was more similar to healthy controls than patients with G2019S L2PD with the manifested disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Heterozygote , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leukocytes, Mononuclear , Mutation , Parkinson Disease/genetics , Proteomics
13.
Mov Disord ; 37(2): 416-421, 2022 02.
Article En | MEDLINE | ID: mdl-34741486

BACKGROUND: Biallelic mutations in the GBA1 gene encoding glucocerebrosidase cause Gaucher's disease, whereas heterozygous carriers are at risk for Parkinson's disease (PD). Glucosylsphingosine is a clinically meaningful biomarker of Gaucher's disease but could not be assayed previously in heterozygous GBA1 carriers. OBJECTIVE: The aim of this study was to assess plasma glucosylsphingosine levels in GBA1 N370S carriers with and without PD. METHODS: Glucosylsphingosine, glucosylceramide, and four other lipids were quantified in plasma from N370S heterozygotes with (n = 20) or without (n = 20) PD, healthy controls (n = 20), idiopathic PD (n = 20), and four N370S homozygotes (positive controls; Gaucher's/PD) using quantitative ultra-performance liquid chromatography tandem mass spectrometry. RESULTS: Plasma glucosylsphingosine was significantly higher in N370S heterozygotes compared with noncarriers, independent of disease status. As expected, Gaucher's/PD cases showed increases in both glucocerebrosidase substrates, glucosylsphingosine and glucosylceramide. CONCLUSIONS: Plasma glucosylsphingosine accumulation in N370S heterozygotes shown in this study opens up its future assessment as a clinically meaningful biomarker of GBA1-PD. © 2021 International Parkinson and Movement Disorder Society.


Gaucher Disease , Parkinson Disease , Gaucher Disease/genetics , Glucosylceramidase/genetics , Humans , Mutation/genetics , Parkinson Disease/genetics , Psychosine/analogs & derivatives
14.
Mov Disord ; 36(12): 2719-2730, 2021 12.
Article En | MEDLINE | ID: mdl-34613624

Mutations in GBA1, which encode for the protein glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease and dementia with Lewy bodies. In addition, growing evidence now suggests that the loss of GCase activity is also involved in onset of all forms of Parkinson's disease, dementia with Lewy bodies, and other dementias, such as progranulin-linked frontal temporal dementia. As a result, there is significant interest in developing GCase-targeted therapies that have the potential to stop or slow progression of these diseases. Despite this interest in GCase as a therapeutic target, there is significant inconsistency in the methodology for measuring GCase enzymatic activity in disease-modeling systems and patient populations, which could hinder progress in developing GCase therapies. In this review, we discuss the different strategies that have been developed to assess GCase activity and highlight the specific strengths and weaknesses of these approaches as well as the gaps that remain. We also discuss the current and potential role of these different methodologies in preclinical and clinical development of GCase-targeted therapies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Glucosylceramidase , Parkinson Disease , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Lewy Bodies/metabolism , Lysosomes/metabolism , Mutation , Parkinson Disease/therapy , alpha-Synuclein/metabolism
15.
Acta Neuropathol ; 142(3): 475-494, 2021 09.
Article En | MEDLINE | ID: mdl-34125248

Heterozygous gain-of-kinase function variants in LRRK2 (leucine-rich repeat kinase 2) cause 1-2% of all cases of Parkinson's disease (PD) albeit with incomplete and age-dependent penetrance. All pathogenic LRRK2 mutations reside within the two catalytic domains of LRRK2-either in its kinase domain (e.g. G2019S) with modest effect or its ROC-COR GTPase domain (e.g. R1441G/H) with large effect on LRRK2 kinase activity. We have previously reported assays to interrogate LRRK2 kinase pathway activity in human bio-samples measuring phosphorylation of its endogenous substrate Rab10, that mirrors LRRK2 kinase activation status. Here, we isolated neutrophils from fresh peripheral blood from 101 participants including 42 LRRK2 mutation carriers (21 with the G2019S and 21 with the R1441G mutations), 27 patients with idiopathic PD, and 32 controls. Using a dual approach, LRRK2 dependent Rab10 phosphorylation at Threonine 73 (pRab10Thr73) was measured by quantitative multiplexed immunoblotting for pRab10Thr73/total Rab10 as well as targeted mass-spectrometry for absolute pRab10Thr73 occupancy. We found a significant over fourfold increase in pRab10Thr73 phosphorylation in carriers of the LRRK2 R1441G mutation irrespective of clinical disease status. The effect of the LRRK2 G2019S mutation did not reach statistical significance. Furthermore, we show that LRRK2 phosphorylation at Serine 935 is not a marker for LRRK2 kinase activity in human neutrophils. When analysing pRab10Thr73 phosphorylation in post-mortem brain samples, we observed overall high variability irrespective of clinical and LRRK2 mutation status and attributed this mainly to the adverse effect of the peri- and post-mortem period on the stability of posttranslational modifications such as protein phosphorylation. Overall, in vivo LRRK2 dependent pRab10Thr73 phosphorylation in human peripheral blood neutrophils is a specific, robust and promising biomarker for significant LRRK2 kinase hyperactivation, as with the LRRK2 R1441G mutation. Additional readouts and/or assays may be needed to increase sensitivity to detect modest LRRK2 kinase activation, as with the LRRK2 G2019S mutation. Our assays could be useful for patient stratification and target engagement studies for LRRK2 kinase inhibitors.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Neutrophils/metabolism , rab GTP-Binding Proteins/genetics , Adult , Aged , Aged, 80 and over , Autopsy , Biomarkers , Female , Heterozygote , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Male , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational
16.
EMBO Mol Med ; 13(3): e13257, 2021 03 05.
Article En | MEDLINE | ID: mdl-33481347

The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.


Parkinson Disease , Proteome , Heterozygote , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Proteomics
17.
Cells ; 9(8)2020 08 11.
Article En | MEDLINE | ID: mdl-32796584

Since 2005, The Michael J. Fox Foundation for Parkinson's Research (MJFF) has invested significant funding and non-funding effort to accelerate research and drug development activity around the Parkinson disease (PD)-associated protein LRRK2. MJFF has spearheaded multiple public/private pre-competitive collaborations that have contributed to our understanding of LRRK2 function; de-risked potential safety questions around the therapeutic use of LRRK2 kinase inhibitors; and generated critical research tools, biosamples, and data for the field. Several LRRK2-targeted therapies are now in human testing due to the hard work of so many in the PD community. In this perspective, we present a holistic description and model of how our Foundation's support targeted important barriers to LRRK2 research and helped move the field into clinical trials.


Biomarkers/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , Animals , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
18.
Mov Disord ; 35(11): 2095-2100, 2020 11.
Article En | MEDLINE | ID: mdl-32652692

BACKGROUND: Leucine-rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine-rich repeat kinase 2 function and target engagement. OBJECTIVES: Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine-rich repeat kinase 2 in PD cohorts. METHODS: Here, we describe enzyme-linked immunosorbent assay-based assays capable of detecting multiple aspects of leucine-rich repeat kinase 2 function at endogenous levels in human tissues. RESULTS: In peripheral blood mononuclear cells from both healthy and affected carriers of the G2019S mutation in leucine-rich repeat kinase 2, we report, for the first time, significantly elevated in vitro kinase activity, while detecting a significant increase in pS935/leucine-rich repeat kinase 2 in idiopathic PD patients. CONCLUSIONS: Quantitative assays such as these described here could potentially uncover specific markers of leucine-rich repeat kinase 2 function that are predictive of disease progression, aid in patient stratification, and be a critical component of upcoming clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Leukocytes, Mononuclear , Parkinson Disease , Enzyme-Linked Immunosorbent Assay , Humans , Leucine/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics
19.
J Vis Exp ; (157)2020 03 21.
Article En | MEDLINE | ID: mdl-32250352

The leucine rich repeat kinase 2 (LRRK2) is the most frequently mutated gene in hereditary Parkinson' disease (PD) and all pathogenic LRRK2 mutations result in hyperactivation of its kinase function. Here, we describe an easy and robust assay to quantify LRRK2 kinase pathway activity in human peripheral blood neutrophils by measuring LRRK2-controlled phosphorylation of one of its physiological substrates, Rab10 at threonine 73. The immunoblotting analysis described requires a fully selective and phosphospecific antibody that recognizes the Rab10 Thr73 epitope phosphorylated by LRRK2, such as the MJFF-pRab10 rabbit monoclonal antibody. It uses human peripheral blood neutrophils, because peripheral blood is easily accessible and neutrophils are an abundant and homogenous constituent. Importantly, neutrophils express relatively high levels of both LRRK2 and Rab10. A potential drawback of neutrophils is their high intrinsic serine protease activity, which necessitates the use of very potent protease inhibitors such as the organophosphorus neurotoxin diisopropylfluorophosphate (DIFP) as part of the lysis buffer. Nevertheless, neutrophils are a valuable resource for research into LRRK2 kinase pathway activity in vivo and should be considered for inclusion into PD biorepository collections.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neutrophils/metabolism , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , Humans , Mutation , Phosphorylation
20.
J Parkinsons Dis ; 10(2): 623-629, 2020.
Article En | MEDLINE | ID: mdl-32007961

The phosphorylated form of LRRK2, pS935 LRRK2, has been proposed as a target modulation biomarker for LRRK2 inhibitors. The primary aim of the study was to characterize and qualify this biomarker for therapeutic trials of LRRK2 inhibitors in Parkinson's disease (PD). To this end, analytically validated assays were used to monitor levels of pS935 LRRK2 and total LRRK2 in peripheral blood mononuclear cells (PBMCs) from the following donor groups: healthy controls, idiopathic PD, and G2019S carriers with and without PD. Neither analyte correlated with age, gender, or disease severity. While total LRRK2 levels were similar across the four groups, there was a significant reduction in pS935 LRRK2 levels in disease-manifesting G2019S carriers compared to idiopathic PD. In aggregate, these data indicate that phosphorylation of LRRK2 at S935 may reflect a state marker for G2019S LRRK2-driven PD, the underlying biology for which requires investigation in future studies. This study also provides critical foundational data to inform the integration of pS935 and total LRRK2 levels as biomarkers in therapeutic trials of LRRK2 kinase inhibitors.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leukocytes, Mononuclear/metabolism , Parkinson Disease/blood , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Middle Aged , Phosphorylation/physiology
...