Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35346791

RESUMEN

Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Receptores Acoplados a Proteínas G , Animales , Ansiedad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Conducta Animal , Cognición , Modelos Animales de Enfermedad , Hipercinesia , Agitación Psicomotora , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/genética
2.
Glia ; 69(6): 1429-1443, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33497496

RESUMEN

Central nervous system (CNS) function depends on precise synaptogenesis, which is shaped by environmental cues and cellular interactions. Astrocytes are outstanding regulators of synapse development and plasticity through contact-dependent signals and through the release of pro- and antisynaptogenic factors. Conversely, myelin and its associated proteins, including Nogo-A, affect synapses in a inhibitory fashion and contribute to neural circuitry stabilization. However, the roles of Nogo-A-astrocyte interactions and their implications in synapse development and plasticity have not been characterized. Therefore, we aimed to investigate whether Nogo-A affects the capacity of astrocytes to induce synaptogenesis. Additionally, we assessed whether downregulation of Nogo-A signaling in an in vivo demyelination model impacts the synaptogenic potential of astrocytes. Our in vitro data show that cortical astrocytes respond to Nogo-A through RhoA pathway activation, exhibiting stress fiber formation and decreased ramified morphology. This phenotype was associated with reduced levels of GLAST protein and aspartate uptake, decreased mRNA levels of the synaptogenesis-associated genes Hevin, glypican-4, TGF-ß1 and BDNF, and decreased and increased protein levels of Hevin and SPARC, respectively. Corroborating these findings, conditioned medium from Nogo-A-treated astrocytes suppressed the formation of structurally and functionally mature synapses in cortical neuronal cultures. After cuprizone-induced acute demyelination, we observed reduced immunostaining for Nogo-A in the visual cortex accompanied by higher levels of Hevin expression in astrocytes and an increase in excitatory synapse density. Hence, we suggest that interactions between Nogo-A and astrocytes might represent an important pathway of plasticity regulation and could be a target for therapeutic intervention in demyelinating diseases in the future.


Asunto(s)
Astrocitos , Enfermedades Desmielinizantes , Humanos , Neurogénesis , Proteínas Nogo , Sinapsis
3.
J Neurochem ; 157(4): 1086-1101, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32892352

RESUMEN

The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Bicuculina/farmacología , Células Cultivadas , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Ratones , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Free Radic Biol Med ; 163: 43-55, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307167

RESUMEN

Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.


Asunto(s)
Receptor de Adenosina A3 , Transportadores de Sodio Acoplados a la Vitamina C , Ácido Ascórbico , Neuronas/metabolismo , Oxidación-Reducción , Receptor de Adenosina A3/genética , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo
5.
Neuroscience ; 448: 140-148, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32976984

RESUMEN

Neuropeptide S (NPS) is a recently discovered peptide signalling through its receptor NPSR, which is expressed throughout the brain. Since NPSR activation increases dopaminergic transmission, we now tested if NPSR modulates behavioural and neurochemical alterations displayed by an animal model of attention-deficit/hyperactivity disorder (ADHD), Spontaneous Hypertensive Rats (SHR), compared to its control strain, Wistar Kyoto rats (WKY). NPS (0.1 and 1 nmol, intracerebroventricularly (icv)) did not modify the performance in the open field test in both strains; however, NPSR antagonism with [tBu-d-Gly5]NPS (3 nmol, icv) increased, per se, the total distance travelled by WKY. In the elevated plus-maze, NPS (1 nmol, icv) increased the percentage of entries in the open arms (%EO) only in WKY, an effect prevented by pretreatment with [tBu-d-Gly5]NPS (3 nmol, icv), which decreased per se the %EO in WKY and increased their number of entries in the closed arms. Immunoblotting of frontal cortical extracts showed no differences of NPSR density, although SHR had a lower NPS content than WKY. SHR showed higher activity of dopamine uptake than WKY, and NPS (1 nmol, icv) did not change this profile. Overall, the present work shows that the pattern of functioning of the NPS system is distinct in WKY and SHR, suggesting that this system may contribute to the pathophysiology of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Neuropéptidos , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
6.
Cell Rep ; 31(12): 107796, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579923

RESUMEN

Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of ß-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aß oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.


Asunto(s)
Envejecimiento/patología , Microglía/patología , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteína de Unión al GTP rhoA/deficiencia , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Línea Celular , Polaridad Celular , Supervivencia Celular , Ratones Endogámicos C57BL , Microglía/metabolismo , Fenotipo , Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118783, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569665

RESUMEN

The NMDA receptor is crucial to several functions in CNS physiology and some of its effects are mediated by promoting nitric oxide production from L-arginine and activation of signaling pathways and the transcription factor CREB. Our previous work demonstrated in retinal cells that increasing intracellular free L-arginine levels directly correlates to nitric oxide (NO) generation and can be promoted by protein synthesis inhibition and increase of free L-arginine concentration. Eukaryotic elongation factor 2 kinase (eEF2K), a calcium/calmodulin-dependent kinase, is also known to be activated by NMDA receptors leading to protein synthesis inhibition. Here we explored how does eEF2K participate in NMDA-induced NO signaling. We found that when this enzyme is inhibited, NMDA loses its ability to promote NO synthesis. On the other hand, when NO synthesis is increased by protein synthesis inhibition with cycloheximide or addition of exogenous L-arginine, eEF2K has no participation, showcasing a specific link between this enzyme and NMDA-induced NO signaling. We have previously shown that inhibition of the canonical NO signaling pathway (guanylyl cyclase/cGMP/cGK) blocks CREB activation by glutamate in retinal cells. Interestingly, pharmacological inhibition of eEF2K fully prevents CREB activation by NMDA, once again demonstrating the importance of eEF2K in NMDA receptor signaling. In summary, we demonstrated here a new role for eEF2K, directly controlling NMDA-dependent nitrergic signaling and modulating L-arginine availability in neurons, which can potentially be a new target for the study of physiological and pathological processes involving NMDA receptors in the central nervous system.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , N-Metilaspartato/farmacología , Óxido Nítrico/biosíntesis , Animales , Arginina/farmacología , Pollos , Cicloheximida/farmacología , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Indazoles/farmacología , Masculino , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Ratas
8.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360667

RESUMEN

Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Óxido Nítrico/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Arginina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Pollos , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Quinasa del Factor 2 de Elongación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nitritos , Fosforilación
9.
Front Neurosci ; 13: 453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143097

RESUMEN

Ascorbate, the reduced form of Vitamin C, is one of the most abundant and important low-molecular weight antioxidants in living tissues. Most animals synthesize vitamin C, but some primates, including humans, have lost this capacity due to disruption in L-gulono-gamma-lactone oxidase gene. Because of this incapacity, those animals must obtain Vitamin C from the diet. Ascorbate is highly concentrated in the central nervous system (CNS), including the retina, and plays essential roles in neuronal physiology. Ascorbate transport into cells is controlled by Sodium Vitamin C Co-Transporters (SVCTs). There are four SVCT isoforms and SVCT2 is the major isoform controlling ascorbate transport in the CNS. Regarding ascorbate release from retinal neurons, Glutamate, by activating its ionotropic receptors leads to ascorbate release via the reversion of SVCT2. Moreover, dopamine, via activation of D1 receptor/cyclic AMP/EPAC2 pathway, also induces ascorbate release via SVCT2 reversion. Because the dopaminergic and glutamatergic systems are interconnected in the CNS, we hypothesized that dopamine could regulate ascorbate release indirectly, via the glutamatergic system. Here we reveal that dopamine increases the release of D-Aspartate from retinal neurons in a way independent on calcium ions and dependent on excitatory amino acid transporters. In addition, dopamine-dependent SVCT2 reversion leading to ascorbate release occurs by activation of AMPA/Kainate receptors and downstream ERK/AKT pathways. Overall, our data reveal a dopamine-to-glutamate signaling that regulates the bioavailability of ascorbate in neuronal cells.

10.
Neural Plast ; 2018: 5851914, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275822

RESUMEN

The regenerative capacity of CNS tracts has ever been a great hurdle to regenerative medicine. Although recent studies have described strategies to stimulate retinal ganglion cells (RGCs) to regenerate axons through the optic nerve, it still remains to be elucidated how these therapies modulate the inhibitory environment of CNS. Thus, the present work investigated the environmental content of the repulsive axon guidance cues, such as Sema3D and its receptors, myelin debris, and astrogliosis, within the regenerating optic nerve of mice submitted to intraocular inflammation + cAMP combined to conditional deletion of PTEN in RGC after optic nerve crush. We show here that treatment was able to promote axonal regeneration through the optic nerve and reach visual targets at twelve weeks after injury. The Regenerating group presented reduced MBP levels, increased microglia/macrophage number, and reduced astrocyte reactivity and CSPG content following optic nerve injury. In addition, Sema3D content and its receptors are reduced in the Regenerating group. Together, our results provide, for the first time, evidence that several regenerative repulsive signals are reduced in regenerating optic nerve fibers following a combined therapy. Therefore, the treatment used made the CNS microenvironment more permissive to regeneration.


Asunto(s)
Compresión Nerviosa/efectos adversos , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/patología , Nervio Óptico/patología , Nervio Óptico/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nervio Óptico/ultraestructura , Traumatismos del Nervio Óptico/metabolismo , Retina/metabolismo , Retina/patología , Retina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA