Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oral Oncol ; 134: 106184, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191479

RESUMEN

Fanconi anemia (FA) patients frequently develop oral squamous cell carcinoma (OSCC). This cancer in FA patients is diagnosed within the first 3-4 decades of life, very often preceded by lesions that suffer a malignant transformation. In addition, they respond poorly to current treatments due to toxicity or multiple recurrences. Translational research on new chemopreventive agents and therapeutic strategies has been unsuccessful partly due to scarcity of disease models or failure to fully reproduce the disease. Here we report that Fanca gene knockout mice (Fanca-/-) frequently display pre-malignant lesions in the oral cavity. Moreover, when these animals were crossed with animals having conditional deletion of Trp53 gene in oral mucosa (K14cre;Trp53F2-10/F2-10), they spontaneously developed OSCC with high penetrance and a median latency of less than ten months. Tumors were well differentiated and expressed markers of squamous differentiation, such as keratins K5 and K10. In conclusion, Fanca and Trp53 genes cooperate to suppress oral cancer in mice, and Fanca-/-;K14cre;Trp53F2-10/F2-10 mice constitute the first animal model of spontaneous OSCC in FA.


Asunto(s)
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Anemia de Fanconi/complicaciones , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Queratinas , Ratones , Ratones Noqueados , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello
2.
CRISPR J ; 5(3): 422-434, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35686982

RESUMEN

Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene (Rasa1). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.


Asunto(s)
Edición Génica , Cigoto , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ratones , Ratones Noqueados , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Cigoto/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163299

RESUMEN

NMSC (non-melanoma skin cancer) is a common tumor in the Caucasian population, accounting for 90% of skin cancers. Among them, squamous cell carcinomas (SCCs) can metastasize and, due to its high incidence, constitute a severe health problem. It has been suggested that cutaneous SCCs with more risk to metastasize express high levels of nuclear IKKα. However, the molecular mechanisms that lead to this enhanced aggressiveness are largely unknown. To understand in depth the influence of nuclear IKKα in skin SCC progression, we have generated murine PDVC57 skin carcinoma cells expressing exogenous IKKα either in the nucleus or in the cytoplasm to further distinguish the tumor properties of IKKα in both localizations. Our results show that IKKα promotes changes in both subcellular compartments, resembling EMT (epithelial-mesenchymal transition), which are more pronounced when IKKα is in the nucleus of these tumor cells. These EMT-related changes include a shift toward a migratory phenotype and induction of the expression of proteins involved in cell matrix degradation, cell survival and resistance to apoptosis. Additionally, we have found that apigenin, a flavonoid with anti-cancer properties, inhibits the expression of IKKα and attenuates most of the pro-tumoral EMT changes induced by IKKα in mouse tumor keratinocytes. Nevertheless, we have found that apigenin only inhibits the expression of the IKKα protein when it is localized in the cytoplasm.


Asunto(s)
Apigenina/farmacología , Quinasa I-kappa B/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Apigenina/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Quinasa I-kappa B/genética , Queratinocitos/metabolismo , Ratones , Transducción de Señal/genética , Piel/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
4.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771750

RESUMEN

ERAS is a relatively uncharacterized gene of the Ras superfamily. It is expressed in ES cells and in the first stages of embryonic development; later on, it is silenced in the majority of cell types and tissues. Although there are several reports showing ERAS expression in tumoral cell lines and human tumor samples, it is unknown if ERAS deregulated expression is enough to drive tumor development. In this report, we have generated transgenic mice expressing ERAS in myoepithelial basal cells of the mammary gland and in basal cells of stratified epithelia. In spite of the low level of ERAS expression, these transgenic mice showed phenotypic alterations resembling overgrowth syndromes caused by the activation of the AKT-PI3K pathway. In addition, their mammary glands present developmental and functional disabilities accompanied by morphological and biochemical alterations in the myoepithelial cells. These mice suffer from tumoral transformation in the mammary glands with high incidence. These mammary tumors resemble, both histologically and by the expression of differentiation markers, malignant adenomyoepitheliomas. In sum, our results highlight the importance of ERAS silencing in adult tissues and define a truly oncogenic role for ERAS in mammary gland cells when inappropriately expressed.

5.
Cells ; 10(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34440675

RESUMEN

Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Envejecimiento/metabolismo , Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Neoplasias/metabolismo , Factores de Edad , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/patología , Animales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Transgénicos , FN-kappa B/genética , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201751

RESUMEN

Cylindromatosis (CYLD) is a deubiquitinase (DUB) enzyme that was initially characterized as a tumor suppressor of adnexal skin tumors in patients with CYLD syndrome. Later, it was also shown that the expression of functionally inactive mutated forms of CYLD promoted tumor development and progression of non-melanoma skin cancer (NMSC). However, the ability of wild-type CYLD to inhibit skin tumorigenesis in vivo in immunocompetent mice has not been proved. Herein, we generated transgenic mice that express the wild type form of CYLD under the control of the keratin 5 (K5) promoter (K5-CYLDwt mice) and analyzed the skin properties of these transgenic mice by WB and immunohistochemistry, studied the survival and proliferating characteristics of primary keratinocytes, and performed chemical skin carcinogenesis experiments. As a result, we found a reduced activation of the nuclear factor kappa B (NF-κB) pathway in the skin of K5-CYLDwt mice in response to tumor necrosis factor-α (TNF-α); accordingly, when subjected to insults, K5-CYLDwt keratinocytes are prone to apoptosis and are protected from excessive hyperproliferation. Skin carcinogenesis assays showed inhibition of tumor development in K5-CYLDwt mice. As a mechanism of this tumor suppressor activity, we found that a moderate increase in CYLD expression levels reduced NF-κB activation, which favored the differentiation of tumor epidermal cells and inhibited its proliferation; moreover, it decreased tumor angiogenesis and inflammation. Altogether, our results suggest that increased levels of CYLD may be useful for anti-skin cancer therapy.


Asunto(s)
Carcinoma de Células Escamosas/patología , Enzima Desubiquitinante CYLD/genética , Neoplasias Cutáneas/patología , Animales , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Enzima Desubiquitinante CYLD/metabolismo , Genes Supresores de Tumor , Inmunocompetencia , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Ésteres del Forbol/toxicidad , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
7.
Oral Dis ; 26(7): 1513-1522, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32369672

RESUMEN

OBJECTIVE: Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS: To address this question, we examined the mice overexpressing Ikkß (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkß). RESULTS: Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkß mice. Premature abrasion was observed in the molars of K5-Ikkß mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkß mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkß mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkß mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION: Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.


Asunto(s)
Ameloblastos , FN-kappa B , Amelogénesis/genética , Animales , Esmalte Dental , Humanos , Ratones , Diente Molar
8.
Int J Oral Sci ; 12(1): 1, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31900382

RESUMEN

Odontogenic tumours are a heterogeneous group of lesions that develop in the oral cavity region and are characterized by the formation of tumoural structures that differentiate as teeth. Due to the diversity of their histopathological characteristics and clinical behaviour, the classification of these tumours is still under debate. Alterations in morphogenesis pathways such as the Hedgehog, MAPK and WNT/ß-catenin pathways are implicated in the formation of odontogenic lesions, but the molecular bases of many of these lesions are still unknown. In this study, we used genetically modified mice to study the role of IKKß (a fundamental regulator of NF-κB activity and many other proteins) in oral epithelial cells and odontogenic tissues. Transgenic mice overexpressing IKKß in oral epithelial cells show a significant increase in immune cells in both the oral epithelia and oral submucosa. They also show changes in the expression of several proteins and miRNAs that are important for cancer development. Interestingly, we found that overactivity of IKKß in oral epithelia and odontogenic tissues, in conjunction with the loss of tumour suppressor proteins (p53, or p16 and p19), leads to the appearance of odontogenic tumours that can be classified as ameloblastic odontomas, sometimes accompanied by foci of secondary ameloblastic carcinomas. These tumours show NF-κB activation and increased ß-catenin activity. These findings may help to elucidate the molecular determinants of odontogenic tumourigenesis and the role of IKKß in the homoeostasis and tumoural transformation of oral and odontogenic epithelia.


Asunto(s)
Células Epiteliales/metabolismo , Genes Supresores de Tumor , Quinasa I-kappa B/biosíntesis , Mucosa Bucal/patología , Tumores Odontogénicos/patología , Odontoma/patología , ARN Mensajero/genética , Animales , Western Blotting , Células Epiteliales/patología , Citometría de Flujo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Ratones , Ratones Transgénicos , Mucosa Bucal/metabolismo , Tumores Odontogénicos/metabolismo , Odontoma/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Comput Struct Biotechnol J ; 17: 251-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867890

RESUMEN

Lung cancer is the leading worldwide cause of cancer mortality, however, neither curative treatments nor substantial prolonged survival has been achieved, highlighting the need for investigating new proteins responsible for its development and progression. IKKα is an essential protein for cell survival and differentiation, which expression is enhanced in human non-small cell lung cancer (NSCLC) and correlates with poor patient survival, appearing as a relevant molecule in lung cancer progression. However, there are not conclusive results about its role in this type of cancer. We have recently found that IKKα performs different functions and activates different signaling pathways depending on its nuclear or cytoplasmic localization in tumor epidermal cells. In this work, we have studied the involvement of IKKα in lung cancer progression through the generation of lung cancer cell lines expressing exogenous IKKα either in the nucleus or in the cytoplasm. We demonstrate that IKKα signaling promotes increased cell malignancy of NSCLC cells as well as lung tumor progression and metastasis in either subcellular localization, through activation of common protumoral proteins, such as Erk, p38 and mTor. But, additionally, we found that depending on its subcellular localization, IKKα has non-overlapping roles in the activation of other different pathways known for their key implication in lung cancer progression: while cytoplasmic IKKα increases EGFR and NF-κB activities in lung tumor cells, nuclear IKKα causes lung tumor progression through c-Myc, Smad2/3 and Snail activation. These results suggest that IKKα may be a promising target for intervention in human NSCLC.

10.
Aging (Albany NY) ; 11(1): 127-159, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631004

RESUMEN

CYLD is a deubiquitinating enzyme known for its role as a tumor suppressor whose mutation leads to skin appendages tumors and other cancers. In this manuscript we report that the tumor suppressor CYLD, similarly to other renowned tumor suppressor genes, protects from premature aging and cancer. We have generated transgenic mice expressing the mutant CYLDC/S protein, lacking its deubiquitinase function, under the control of the keratin 5 promoter, the K5-CYLDC/S mice. These mice express the transgene in different organs, including those considered to be more susceptible to aging, such as skin and thymus. Our results show that K5-CYLDC/S mice exhibit epidermal, hair follicle, and sebaceous gland alterations; and, importantly, they show signs of premature aging from an early age. Typically, 3-month-old K5-CYLDC/S mice exhibit a phenotype characterized by alopecia and kyphosis, and, the histological examination reveals that transgenic mice show signs of accelerated aging in numerous organs such as skin, thymus, pancreas, liver and lung. Additionally, they spontaneously develop tumors of diverse origin. Over-activation of the NF-κB pathway, along with hyperactivation of Akt, JNK and c-Myc, and chronic inflammation, appear as the mechanisms responsible for the premature aging of the K5-CYLDC/S mice.


Asunto(s)
Envejecimiento Prematuro/genética , Enzima Desubiquitinante CYLD/metabolismo , Folículo Piloso/crecimiento & desarrollo , Neoplasias/etiología , Animales , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Enzima Desubiquitinante CYLD/genética , Regulación de la Expresión Génica/fisiología , Humanos , Queratinocitos/fisiología , Ratones , Ratones Transgénicos , Mutación , FN-kappa B , Regiones Promotoras Genéticas , Envejecimiento de la Piel/genética , Timo/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
11.
Sci Rep ; 8(1): 13038, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158566

RESUMEN

Although Ras genes are frequently mutated in human tumors, these mutations are uncommon in breast cancer. However, many breast tumors show evidences of Ras pathway activation. In this manuscript, we have analyzed and characterized mouse mammary tumors generated by random Sleeping Beauty transposon mutagenesis and identify ERAS -a member of the RAS family silenced in adult tissues- as a new gene involved in progression and malignancy of breast cancer. Forced expression of ERAS in human non-transformed mammary gland cells induces a process of epithelial-to-mesenchymal transition and an increase in stem cells markers; these changes are mediated by miR-200c downregulation. ERAS expression in human tumorigenic mammary cells leads to the generation of larger and less differentiated tumors in xenotransplant experiments. Immunohistochemical, RT-qPCR and bioinformatics analysis of human samples show that ERAS is aberrantly expressed in 8-10% of breast tumors and this expression is associated with distant metastasis and reduced metastasis-free survival. In summary, our results reveal that inappropriate activation of ERAS may be important in the development of a subset of breast tumors. These findings open the possibility of new specific treatments for this subset of ERAS-expressing tumors.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Proteína Oncogénica p21(ras)/metabolismo , Animales , Neoplasias de la Mama/patología , Carcinogénesis , Diferenciación Celular , Células Cultivadas , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Experimentales/patología , Neoplasias Experimentales/fisiopatología , Proteína Oncogénica p21(ras)/genética , Trasplante Heterólogo
14.
Mol Cancer Res ; 15(9): 1255-1264, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28584022

RESUMEN

IKKß (encoded by IKBKB) is a protein kinase that regulates the activity of numerous proteins important in several signaling pathways, such as the NF-κB pathway. IKKß exerts a protumorigenic role in several animal models of lung, hepatic, intestinal, and oral cancer. In addition, genomic and proteomic studies of human tumors also indicate that IKBKB gene is amplified or overexpressed in multiple tumor types. Here, the relevance of IKKß in skin cancer was determined by performing carcinogenesis studies in animal models overexpressing IKKß in the basal skin layer. IKKß overexpression resulted in a striking resistance to skin cancer development and an increased expression of several tumor suppressor proteins, such as p53, p16, and p19. Mechanistically, this skin tumor-protective role of IKKß is independent of p53, but dependent on the activity of the Ink4a/Arf locus. Interestingly, in the absence of p16 and p19, IKKß-increased expression favors the appearance of cutaneous spindle cell-like squamous cell carcinomas, which are highly aggressive tumors. These results reveal that IKKß activity prevents skin tumor development, and shed light on the complex nature of IKKß effects on cancer progression, as IKKß can both promote and prevent carcinogenesis depending on the cell type or molecular context.Implications: The ability of IKKß to promote or prevent carcinogenesis suggests the need for further evaluation when targeting this protein. Mol Cancer Res; 15(9); 1255-64. ©2017 AACR.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Quinasa I-kappa B/biosíntesis , Neoplasias Cutáneas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Epigénesis Genética , Quinasa I-kappa B/genética , Ratones , Ratones Transgénicos , Mutación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Cancer Res ; 77(6): 1357-1368, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28108518

RESUMEN

RAS genes are mutated in 20% of human tumors, but these mutations are very rare in breast cancer. Here, we used a mouse model to generate tumors upon activation of a mutagenic T2Onc2 transposon via expression of a transposase driven by the keratin K5 promoter in a p53+/- background. These animals mainly developed mammary tumors, most of which had transposon insertions in one of two RASGAP genes, neurofibromin1 (Nf1) and RAS p21 protein activator (Rasa1). Immunohistochemical analysis of a collection of human breast tumors confirmed that low expression of RASA1 is frequent in basal (triple-negative) and estrogen receptor negative tumors. Bioinformatic analysis of human breast tumors in The Cancer Genome Atlas database showed that although RASA1 mutations are rare, allelic loss is frequent, particularly in basal tumors (80%) and in association with TP53 mutation. Inactivation of RASA1 in MCF10A cells resulted in the appearance of a malignant phenotype in the context of mutated p53. Our results suggest that alterations in the Ras pathway due to the loss of negative regulators of RAS may be a common event in basal breast cancer. Cancer Res; 77(6); 1357-68. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Elementos Transponibles de ADN/genética , Transposasas/fisiología , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/fisiología , Proteína Activadora de GTPasa p120/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Transgénicos , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína Activadora de GTPasa p120/genética
17.
Genes (Basel) ; 8(12)2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29292732

RESUMEN

Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß) is a kinase principally known as a positive regulator of the ubiquitous transcription factor family Nuclear Factor-kappa B (NF-κB). In addition, IKKß also phosphorylates a number of other proteins that regulate many cellular processes, from cell cycle to metabolism and differentiation. As a consequence, IKKß affects cell physiology in a variety of ways and may promote or hamper tumoral transformation depending on hitherto unknown circumstances. In this article, we give an overview of the NF-κB-dependent and -independent functions of IKKß. We also summarize the current knowledge about the relationship of IKKß with cellular transformation and cancer, obtained mainly through the study of animal models with cell type-specific modifications in IKKß expression or activity. Finally, we describe the most relevant data about IKKß implication in cancer obtained from the analysis of the human tumoral samples gathered in The Cancer Genome Atlas (TCGA) and the Catalogue of Somatic Mutations in Cancer (COSMIC).

18.
Oncotarget ; 7(47): 76779-76792, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27732959

RESUMEN

IKKα plays a mandatory role in keratinocyte differentiation and exerts an important task in non-melanoma skin cancer development. However, it is not fully understood how IKKα exerts these functions. To analyze in detail the role of IKKα in epidermal stratification and differentiation, we have generated tridimensional (3D) cultures of human HaCaT keratinocytes and fibroblasts in fibrin gels, obtaining human skin equivalents that comprise an epidermal and a dermal compartments that resembles both the structure and differentiation of normal human skin. We have found that IKKα expression must be strictly regulated in epidermis, as alterations in its levels lead to histological defects and promote the development of malignant features. Specifically, we have found that the augmented expression of IKKα results in increased proliferation and clonogenicity of human keratinocytes, and leads to an accelerated and altered differentiation, augmented ability of invasive growth, induction of the expression of oncogenic proteins (Podoplanin, Snail, Cyclin D1) and increased extracellular matrix proteolytic activity. All these characteristics make keratinocytes overexpressing IKKα to be at a higher risk of developing skin cancer. Comparison of genetic profile obtained by analysis of microarrays of RNA of skin equivalents from both genotypes supports the above described findings.

19.
Oncotarget ; 7(20): 29531-47, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27121058

RESUMEN

Nonmelanoma skin cancers (NMSC) are the most common human malignancies. IKKα is an essential protein for skin development and is also involved in the genesis and progression of NMSC, through mechanisms not fully understood. While different studies show that IKKα protects against skin cancer, others indicate that it promotes NMSC. To resolve this controversy we have generated two models of transgenic mice expressing the IKKα protein in the nucleus (N-IKKα mice) or the cytoplasm (C-IKKα mice) of keratinocytes. Chemical skin carcinogenesis experiments show that tumors developed by both types of transgenic mice exhibit histological and molecular characteristics that make them more prone to progression and invasion than those developed by Control mice. However, the mechanisms through which IKKα promotes skin tumors are different depending on its subcellular localization; while IKKα of cytoplasmic localization increases EGFR, MMP-9 and VEGF-A activities in tumors, nuclear IKKα causes tumor progression through regulation of c-Myc, Maspin and Integrin-α6 expression. Additionally, we have found that N-IKKα skin tumors mimic the characteristics associated to aggressive human skin tumors with high risk to metastasize. Our results show that IKKα has different non-overlapping roles in the nucleus or cytoplasm of keratinocytes, and provide new targets for intervention in human NMSC progression.


Asunto(s)
Núcleo Celular/enzimología , Citoplasma/enzimología , Quinasa I-kappa B/metabolismo , Queratinocitos/patología , Neoplasias Cutáneas/patología , Animales , Carcinoma Basocelular/enzimología , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Humanos , Queratinocitos/enzimología , Ratones , Ratones Transgénicos , Neoplasias Cutáneas/enzimología
20.
Oncotarget ; 7(15): 20902-18, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26959115

RESUMEN

p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.


Asunto(s)
Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Epidermis/patología , Neoplasias Cutáneas/patología , Proteína p53 Supresora de Tumor/fisiología , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Apoptosis , Carcinogénesis/metabolismo , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Células Cultivadas , Epidermis/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...