Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 14(1): 91-104, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31839542

RESUMEN

The scarcity of donors and need for immunosuppression limit pancreatic islet transplantation to a few patients with labile type 1 diabetes. Transplantation of encapsulated stem cell-derived islets (SC islets) might extend the applicability of islet transplantation to a larger cohort of patients. Transplantation of conformal-coated islets into a confined well-vascularized site allows long-term diabetes reversal in fully MHC-mismatched diabetic mice without immunosuppression. Here, we demonstrated that human SC islets reaggregated from cryopreserved cells display glucose-stimulated insulin secretion in vitro. Importantly, we showed that conformally coated SC islets displayed comparable in vitro function with unencapsulated SC islets, with conformal coating permitting physiological insulin secretion. Transplantation of SC islets into the gonadal fat pad of diabetic NOD-scid mice revealed that both unencapsulated and conformal-coated SC islets could reverse diabetes and maintain human-level euglycemia for more than 80 days. Overall, these results provide support for further evaluation of safety and efficacy of conformal-coated SC islets in larger species.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/citología , Trasplante de Islotes Pancreáticos , Células Madre/citología , Animales , Células Cultivadas , Criopreservación/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Células Madre/metabolismo , Trasplante Heterólogo
2.
Nature ; 569(7756): 368-373, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068696

RESUMEN

In vitro differentiation of human stem cells can produce pancreatic ß-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro ß-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to ß-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo ß-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the ß-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro ß-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina/citología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Separación Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/clasificación , Células Secretoras de Insulina/metabolismo , Integrina alfa1/metabolismo , Masculino , Ratones , RNA-Seq , Análisis de la Célula Individual , Células Madre/metabolismo
3.
Cell Metab ; 29(3): 638-652.e5, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30581122

RESUMEN

Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFßSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFß inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.


Asunto(s)
Diabetes Mellitus Tipo 2 , Harmina/farmacología , Células Secretoras de Insulina , Inhibidores de la Monoaminooxidasa/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Animales , Línea Celular , Proliferación Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Smad/antagonistas & inhibidores , Células Madre , Adulto Joven , Quinasas DyrK
4.
Diabetes ; 66(5): 1111-1120, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28507211

RESUMEN

Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing ß-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional ß-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into ß-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous ß-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diabetes Mellitus/terapia , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina/trasplante , Diferenciación Celular , Humanos , Selección de Paciente , Trasplante Autólogo/métodos
6.
Nat Commun ; 7: 11463, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27163171

RESUMEN

We recently reported the scalable in vitro production of functional stem cell-derived ß-cells (SC-ß cells). Here we extend this approach to generate the first SC-ß cells from type 1 diabetic patients (T1D). ß-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-ß cells express ß-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of ß-cell stress. Using these assays, we find no major differences in T1D SC-ß cells compared with SC-ß cells derived from non-diabetic patients. These results show that T1D SC-ß cells could potentially be used for the treatment of diabetes, drug screening and the study of ß-cell biology.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Células Madre Pluripotentes Inducidas/patología , Células Secretoras de Insulina/patología , Animales , Diferenciación Celular , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones SCID , Trasplante de Células Madre
8.
Nat Med ; 22(3): 306-11, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26808346

RESUMEN

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-ß cells), which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However, clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-ß cells. SC-ß cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.


Asunto(s)
Alginatos , Glucemia/metabolismo , Péptido C/metabolismo , Trasplante de Células/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Células Madre Embrionarias/citología , Reacción a Cuerpo Extraño/prevención & control , Hidrogeles , Células Secretoras de Insulina/trasplante , Animales , Western Blotting , Técnicas de Cultivo de Célula , Diferenciación Celular , Cromatografía Liquida , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunocompetencia , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Microscopía Confocal , Microscopía de Contraste de Fase , Morfolinas , Polímeros , Espectrometría de Masas en Tándem , Triazoles
9.
Cell ; 159(2): 428-39, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303535

RESUMEN

The generation of insulin-producing pancreatic ß cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide ß cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive ß cells from hPSC in vitro. These stem-cell-derived ß cells (SC-ß) express markers found in mature ß cells, flux Ca(2+) in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult ß cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.


Asunto(s)
Técnicas de Cultivo de Célula , Células Secretoras de Insulina/citología , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(8): 3038-43, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516164

RESUMEN

Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic ß cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal ß cells than adult ß cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true ß cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional ß cells.


Asunto(s)
Diferenciación Celular/fisiología , Células Secretoras de Insulina/citología , Páncreas/citología , Células Madre Pluripotentes/citología , Adulto , Diferenciación Celular/genética , Feto/citología , Feto/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Células Secretoras de Insulina/metabolismo , Análisis por Micromatrices , Células Madre Pluripotentes/metabolismo
11.
Development ; 140(12): 2472-83, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23715541

RESUMEN

Insulin-secreting pancreatic ß-cells are essential regulators of mammalian metabolism. The absence of functional ß-cells leads to hyperglycemia and diabetes, making patients dependent on exogenously supplied insulin. Recent insights into ß-cell development, combined with the discovery of pluripotent stem cells, have led to an unprecedented opportunity to generate new ß-cells for transplantation therapy and drug screening. Progress has also been made in converting terminally differentiated cell types into ß-cells using transcriptional regulators identified as key players in normal development, and in identifying conditions that induce ß-cell replication in vivo and in vitro. Here, we summarize what is currently known about how these strategies could be utilized to generate new ß-cells and highlight how further study into the mechanisms governing later stages of differentiation and the acquisition of functional capabilities could inform this effort.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus/terapia , Células Secretoras de Insulina/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Animales , Proliferación Celular , Transdiferenciación Celular , Reprogramación Celular , Diabetes Mellitus/patología , Endodermo/citología , Endodermo/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/trasplante , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
12.
Nat Methods ; 10(6): 553-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584186

RESUMEN

We describe a method to help overcome restrictions on the differentiation propensities of human pluripotent stem cells. Culturing pluripotent stem cells in dimethylsulfoxide (DMSO) activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle and, in more than 25 embryonic and induced pluripotent stem cell lines, improves directed differentiation into multiple lineages. DMSO treatment also improves differentiation into terminal cell types in several cell lines.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Cultivadas , Dimetilsulfóxido/farmacología , Células Madre Embrionarias/citología , Fase G1/efectos de los fármacos , Humanos , Proteína de Retinoblastoma/metabolismo
14.
Mol Cell ; 43(3): 406-17, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816347

RESUMEN

Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Ciclina A2/metabolismo , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Línea Celular , Ciclina A2/química , Ciclina A2/fisiología , Ciclina B1/química , Ciclina B1/fisiología , Ciclina E/química , Ciclina E/metabolismo , Ciclina E/fisiología , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Células HeLa , Humanos , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/fisiología , Fosforilación , Proteómica/métodos , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA