Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Acta Neuropathol Commun ; 12(1): 22, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317196

Deposition of amyloid beta (Aß) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aß. We recently identified the Uppsala APP mutation (APPUpp), which causes Aß pathology by a triple mechanism: increased ß-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aß conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aß pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aß pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased ß-secretase cleavage and suppressed α-secretase cleavage, resulting in AßUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aß pathology in all models, whereas the Aß protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aß pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AßUpp42 aggregates were found to affect their interaction with anti-Aß antibodies and profoundly modify the Aß-mediated glial response, which may be important aspects to consider for further development of AD therapies.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain/pathology , Disease Models, Animal , Gliosis/pathology , Ligands , Mice, Transgenic
2.
BMC Genomics ; 23(1): 99, 2022 Feb 04.
Article En | MEDLINE | ID: mdl-35120450

BACKGROUND: Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-ß precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer's disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. RESULTS: Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid ß deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. CONCLUSIONS: Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.


Alzheimer Disease , Frontotemporal Dementia , Alzheimer Disease/genetics , Amyloid beta-Peptides , Frontotemporal Dementia/genetics , Humans , Membrane Glycoproteins , Mutation , Presenilin-1/genetics , Presenilin-2/genetics , Receptors, Immunologic
3.
Sci Transl Med ; 13(606)2021 08 11.
Article En | MEDLINE | ID: mdl-34380771

Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid ß (Aß). Here, we describe the Uppsala APP mutation (Δ690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) Aß42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing ß-secretase cleavage and affecting α-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated Aß, AßUpp1-42Δ19-24, accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.


Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Humans
...