Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953500

RESUMEN

Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It takes part of specific developmental programs and maintains the organism homeostasis in response to unfavourable environments. Bryophytes could provide with valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to the ones present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programs, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.

3.
Plant Cell Physiol ; 63(12): 1994-2007, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36001044

RESUMEN

The development of the male gametophyte is a tightly regulated process that requires the precise control of cell division and gene expression. A relevant aspect to understand the events underlying pollen development regulation constitutes the identification and characterization of the genes required for this process. In this work, we showed that the DC1 domain protein BINUCLEATE POLLEN (BNP) is essential for pollen development and germination. Pollen grains carrying a defective BNP alleles failed to complete mitosis II and exhibited impaired pollen germination. By yeast two-hybrid analysis and bimolecular fluorescence complementation assays, we identified a set of BNP-interacting proteins. Among confirmed interactors, we found the NAC family transcriptional regulators Vascular Plant One-Zinc Finger 1 (VOZ1) and VOZ2. VOZ1 localization changes during pollen development, moving to the vegetative nucleus at the tricellular stage. We observed that this relocalization requires BNP; in the absence of BNP in pollen from bnp/BNP plants, VOZ1 nuclear localization is impaired. As the voz1voz2 double mutants showed the same developmental defect observed in bnp pollen grains, we propose that BNP requirement to complete microgametogenesis could be linked to its interaction with VOZ1/2 proteins. BNP could have the role of a scaffold protein, recruiting VOZ1/2 to the endosomal system into assemblies that are required for their further translocation to the nucleus, where they act as transcriptional regulators.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Polen , Mitosis , Regulación de la Expresión Génica de las Plantas , Mutación/genética
4.
Methods Mol Biol ; 2447: 185-192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583782

RESUMEN

Ferroptosis is an oxidative iron-dependent cell death that was recently described in vertebrates, invertebrates, fungi, plants, and bacteria. In plants, ferroptosis has been reported in response to heat shock in roots of 6-day-old Arabidopsis thaliana seedlings. Generally, all biochemical and morphological ferroptosis hallmarks are conserved between animals and plants. Here, we describe a protocol to induce and quantify ferroptosis in plants based on the analysis of dead cells with a Sytox Green stain. Furthermore, heat shock induced cell death is prevented by using specific ferroptosis inhibitors.


Asunto(s)
Arabidopsis , Ferroptosis , Animales , Arabidopsis/metabolismo , Muerte Celular , Peroxidación de Lípido , Oxidación-Reducción , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Biochem J ; 479(7): 857-866, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35438135

RESUMEN

Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.


Asunto(s)
Ferroptosis , Animales , Hierro/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046016

RESUMEN

Mitochondrial adrenodoxins (ADXs) are small iron-sulfur proteins with electron transfer properties. In animals, ADXs transfer electrons between an adrenodoxin reductase (ADXR) and mitochondrial P450s, which is crucial for steroidogenesis. Here we show that a plant mitochondrial steroidogenic pathway, dependent on an ADXR-ADX-P450 shuttle, is essential for female gametogenesis and early embryogenesis through a maternal effect. The steroid profile of maternal and gametophytic tissues of wild-type (WT) and adxr ovules revealed that homocastasterone is the main steroid present in WT gametophytes and that its levels are reduced in the mutant ovules. The application of exogenous homocastasterone partially rescued adxr and P450 mutant phenotypes, indicating that gametophytic homocastasterone biosynthesis is affected in the mutants and that a deficiency of this hormone causes the phenotypic alterations observed. These findings also suggest not only a remarkable similarity between steroid biosynthetic pathways in plants and animals but also a common function during sexual reproduction.


Asunto(s)
Adrenodoxina/metabolismo , Arabidopsis/embriología , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Desarrollo Embrionario/genética , Gametogénesis/fisiología , Células Germinativas de las Plantas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fitosteroles/biosíntesis , Unión Proteica
7.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817556

RESUMEN

Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.


Asunto(s)
Cianobacterias/citología , Cianobacterias/metabolismo , Ferroptosis , Hierro/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Citosol/metabolismo , Glutatión/metabolismo , Respuesta al Choque Térmico , Lipidómica , Lípidos/química , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Synechocystis/metabolismo , Tilacoides/metabolismo
8.
Mol Microbiol ; 116(1): 109-125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33550595

RESUMEN

Diatoms are unicellular organisms containing red algal-derived plastids that probably originated as result of serial endosymbioses between an ancestral heterotrophic organism and a red alga or cryptophyta algae from which has only the chloroplast left. Diatom mitochondria are thus believed to derive from the exosymbiont. Unlike animals and fungi, diatoms seem to contain ancestral respiratory chains. In support of this, genes encoding gamma type carbonic anhydrases (CAs) whose products were shown to be intrinsic complex I subunits in plants, Euglena and Acanthamoeba were found in diatoms, a representative of Stramenopiles. In this work, we experimentally show that mitochondrial complex I in diatoms is a large complex containing gamma type CA subunits, supporting an ancestral origin. By using a bioinformatic approach, a complex I integrated CA domain with heterotrimeric subunit composition is proposed.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Diatomeas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Anhidrasas Carbónicas/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Diatomeas/genética , Complejo I de Transporte de Electrón/genética , Evolución Molecular , Mitocondrias/genética , Filogenia , RNA-Seq , Rhodophyta/genética , Alineación de Secuencia , Simbiosis/genética
9.
J Exp Bot ; 72(6): 2125-2135, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32918080

RESUMEN

Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.


Asunto(s)
Ferroptosis , Muerte Celular , Hierro , Peroxidación de Lípido , Especies Reactivas de Oxígeno
10.
Int J Dev Biol ; 65(4-5-6): 187-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930346

RESUMEN

The cytochrome P450 superfamily is a large enzymatic protein family that is widely distributed along diverse kingdoms. In plants, cytochrome P450 monooxygenases (CYPs) participate in a vast array of pathways leading to the synthesis and modification of multiple metabolites with variable and important functions during different stages of plant development. This includes the biosynthesis and degradation of a great assortment of compounds implicated in a variety of physiological responses, such as signaling and defense, organ patterning and the biosynthesis of structural polymers, among others. In this review, we summarize the characteristics of the different families of plant CYPs, focusing on the most recent advances in elucidating the roles of CYPs in plant growth and development and more specifically, during plant gametogenesis, fertilization and embryogenesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Plantas , Sistema Enzimático del Citocromo P-450/genética , Genes de Plantas , Desarrollo de la Planta , Plantas/enzimología , Plantas/genética
11.
Plant Cell Environ ; 44(7): 2134-2149, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33058168

RESUMEN

Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Marchantia/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Front Plant Sci ; 11: 599247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329663

RESUMEN

In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.

13.
Plant Cell Physiol ; 61(6): 1080-1094, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163154

RESUMEN

The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , ARN Mensajero/metabolismo , Arabidopsis/enzimología , Perfilación de la Expresión Génica , Potencial de la Membrana Mitocondrial , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo , Transcriptoma
14.
Bio Protoc ; 10(20): e3800, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659454

RESUMEN

Ascorbic acid (AsA) and gluthathione (GSH) are two key components of the antioxidant machinery of eukaryotic and prokaryotic cells. The cyanobacterium Synechocystis sp. PCC 6803 presents both compounds in different concentrations (AsA, 20-100 µM and GSH, 2-5 mM). Therefore, it is important to have precise and sensitive methods to determine the redox status in the cell and to detect variations in this antioxidants. In this protocol, we describe an improved method to estimate the content of both antioxidants (in their reduced and oxidized forms) from the same sample obtained from liquid cultures of Synechocystis sp. PCC 6803.

15.
Development ; 146(10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097434

RESUMEN

Mediator is a large multiprotein complex that is required for the transcription of most, if not all, genes transcribed by RNA Polymerase II. A core set of subunits is essential to assemble a functional Mediator in vitro and, therefore, the corresponding loss-of-function mutants are expected to be lethal. The MED30 subunit is essential in animal systems, but is absent in yeast. Here, we report that MED30 is also essential for both male gametophyte and embryo development in the model plant Arabidopsis thaliana Mutant med30 pollen grains were viable and some were able to germinate and target the ovules, although the embryos aborted shortly after fertilization, suggesting that MED30 is important for the paternal control of early embryo development. When gametophyte defects were bypassed by specific pollen complementation, loss of MED30 led to early embryo development arrest. Later in plant development, MED30 promotes flowering through multiple signaling pathways; its downregulation led to a phase change delay, downregulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3), FLOWERING LOCUS T (FTI) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and upregulation of FLOWERING LOCUS C (FLC).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Cell Physiol ; 60(5): 986-998, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668784

RESUMEN

Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.


Asunto(s)
Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Anhidrasas Carbónicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
17.
Genes Dev ; 32(9-10): 602-619, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802123

RESUMEN

Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.


Asunto(s)
Antioxidantes/metabolismo , Evolución Biológica , Muerte Celular/fisiología , Hierro/metabolismo , Peroxidación de Lípido , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie
18.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985560

RESUMEN

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Asunto(s)
Muerte Celular , Animales , Apoptosis , Humanos , Hierro/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
19.
J Cell Biol ; 216(2): 463-476, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28100685

RESUMEN

In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.


Asunto(s)
Arabidopsis/metabolismo , Respuesta al Choque Térmico , Calor , Hierro/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Ácido Ascórbico/metabolismo , Muerte Celular , Evolución Molecular , Glutatión/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Quelantes del Hierro/farmacología , Peroxidación de Lípido , Microscopía Fluorescente , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo
20.
Plant J ; 90(2): 261-275, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28107777

RESUMEN

In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Polen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...