Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(28): 30993-30997, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035929

RESUMEN

A total synthesis of each homoseongomycin enantiomer was accomplished in 17 total steps (longest linear sequence = 12 steps) and 10 chromatographic purifications. Several schemes were attempted to forge the key 5-membered ring, but only a Suzuki coupling-intramolecular Friedel-Crafts acylation sequence proved viable. Challenges encountered during the optical rotation characterization of the natural product left us with two important takeaways. First, highly colored compounds like homoseongomycin that absorb near/at the sodium d-line may require optical rotation measurements at other wavelengths. Second, high dilution of such compounds to obtain measurement at the sodium d-line could result in artificially large and incorrectly assigned specific rotations. To verify the optical rotation, electronic circular dichroism spectra were acquired for both homoseongomycin enantiomers and were transformed into optical rotary dispersions via the Kramers-Kronig transform. We note the wavelength dependency on rotation, and at the sodium d-line 589 nm, we reassign the optical rotation of L-homoseongomycin from (-) to (+).

2.
J Chem Inf Model ; 64(13): 5262-5272, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38869471

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a highly virulent pathogen whose nuclear localization signal (NLS) sequence from capsid protein binds to the host importin-α transport protein and blocks nuclear import. We studied the molecular mechanisms by which two small ligands, termed I1 and I2, interfere with the binding of VEEV's NLS peptide to importin-α protein. To this end, we performed all-atom replica exchange molecular dynamics simulations probing the competitive binding of the VEEV coreNLS peptide and I1 or I2 ligand to the importin-α major NLS binding site. As a reference, we used our previous simulations, which examined noncompetitive binding of the coreNLS peptide or the inhibitors to importin-α. We found that both inhibitors completely abrogate the native binding of the coreNLS peptide, forcing it to adopt a manifold of nonnative loosely bound poses within the importin-α major NLS binding site. Both inhibitors primarily destabilize the native coreNLS binding by masking its amino acids rather than competing with it for binding to importin-α. Because I2, in contrast to I1, binds off-site localizing on the edge of the major NLS binding site, it inhibits fewer coreNLS native binding interactions than I1. Structural analysis is supported by computations of the free energies of the coreNLS peptide binding to importin-α with or without competition from the inhibitors. Specifically, both inhibitors reduce the free energy gain from coreNLS binding, with I1 causing significantly larger loss than I2. To test our simulations, we performed AlphaScreen experiments measuring IC50 values for both inhibitors. Consistent with in silico results, the IC50 value for I1 was found to be lower than that for I2. We hypothesize that the inhibitory action of I1 and I2 ligands might be specific to the NLS from VEEV's capsid protein.


Asunto(s)
Unión Competitiva , Simulación de Dinámica Molecular , Señales de Localización Nuclear , alfa Carioferinas , alfa Carioferinas/metabolismo , alfa Carioferinas/química , alfa Carioferinas/antagonistas & inhibidores , Ligandos , Señales de Localización Nuclear/química , Virus de la Encefalitis Equina Venezolana/metabolismo , Virus de la Encefalitis Equina Venezolana/química , Unión Proteica , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Secuencia de Aminoácidos
3.
Chem Commun (Camb) ; 60(56): 7192-7195, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38904432

RESUMEN

A bipolar polymer cathode material, containing redox-active azo benzene and diamine moieties, was synthesized for sodium-ion batteries. The n-type azo group and p-type amine group enable a wide cutoff window with an initial capacity of 93 mA h g-1 at 50 mA g-1 and a high voltage plateau at ∼3.3 V.

4.
ACS Chem Neurosci ; 15(11): 2322-2333, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38804618

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-ß 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.


Asunto(s)
Aplysia , Espectrometría de Masas , Receptores Nicotínicos , Animales , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Espectrometría de Masas/métodos , Sitios de Unión , Unión Proteica/fisiología , Proteínas Portadoras/metabolismo , Bungarotoxinas/farmacología , Bungarotoxinas/metabolismo , Bungarotoxinas/química , Acetilcolina/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Modelos Moleculares
5.
Eur J Med Chem ; 272: 116459, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704942

RESUMEN

Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 µM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.


Asunto(s)
Epóxido Hidrolasas , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Animales , Ratones , Relación Estructura-Actividad , Humanos , Estructura Molecular , Aminopeptidasas/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Éteres/farmacología , Éteres/química , Éteres/síntesis química , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Cristalografía por Rayos X
6.
Proteomics ; 24(12-13): e2300281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38171879

RESUMEN

Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.


Asunto(s)
Glicopéptidos , Glicosilación , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Humanos , Espectrometría de Movilidad Iónica/métodos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Espectrometría de Masas/métodos , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Animales , Glicómica/métodos , Glicoproteínas/química , Glicoproteínas/análisis , Glicoproteínas/metabolismo
7.
J Biol Chem ; 299(12): 105353, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858677

RESUMEN

The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.


Asunto(s)
Antígeno B7-H1 , Modelos Moleculares , Neoplasias , Transducción de Señal , Humanos , Antígeno B7-H1/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Inmunoterapia , Leucocitos Mononucleares/metabolismo , Neoplasias/tratamiento farmacológico , Péptidos/farmacología , Receptor de Muerte Celular Programada 1/agonistas , Receptor de Muerte Celular Programada 1/química , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Mutación , Estructura Cuaternaria de Proteína , Línea Celular Tumoral , Inmunidad/efectos de los fármacos
8.
J Chem Inf Model ; 63(15): 4791-4802, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37531558

RESUMEN

Free energy perturbation coupled with replica exchange with solute tempering (FEP/REST) offers a rigorous approach to compute relative free energy changes for ligands. To determine the applicability of FEP/REST for the ligands with distributed binding poses, we considered two alchemical transformations involving three putative inhibitors I0, I1, and I2 of the Venezuelan equine encephalitis virus nuclear localization signal sequence binding to the importin-α (impα) transporter protein. I0 → I1 and I0 → I2 transformations, respectively, increase or decrease the polarity of the parent molecule. Our objective was three-fold─(i) to verify FEP/REST technical performance and convergence, (ii) to estimate changes in binding free energy ΔΔG, and (iii) to determine the utility of FEP/REST simulations for conformational binding analysis. Our results are as follows. First, our FEP/REST implementation properly follows FEP/REST formalism and produces converged ΔΔG estimates. Due to ligand inherent unbinding, the better FEP/REST strategy lies in performing multiple independent trajectories rather than extending their length. Second, I0 → I1 and I0 → I2 transformations result in overall minor changes in inhibitor binding free energy, slightly strengthening the affinity of I1 and weakening that of I2. Electrostatic interactions dominate binding interactions, determining the enthalpic changes. The two transformations cause opposite entropic changes, which ultimately govern binding affinities. Importantly, we confirm the validity of FEP/REST free energy estimates by comparing them with our previous REST simulations, directly probing binding of three ligands to impα. Third, we established that FEP/REST simulations can sample binding ensembles of ligands. Thus, FEP/REST can be applied (i) to study the energetics of the ligand binding without defined poses and showing minor differences in affinities |ΔΔG| ≲ 0.5 kcal/mol and (ii) to collect ligand binding conformational ensembles.


Asunto(s)
Simulación de Dinámica Molecular , Ligandos , Unión Proteica , Sitios de Unión , Entropía , Termodinámica
9.
Biophys J ; 122(17): 3476-3488, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542371

RESUMEN

Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and nonspecifically by adopting five diverse conformational clusters with low similarity to the x-ray structure 3VE6 of NLS-impα complex. Despite the prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively, adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analyses indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.


Asunto(s)
Señales de Localización Nuclear , Proteínas Nucleares , Humanos , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Carioferinas/metabolismo , alfa Carioferinas/metabolismo , Unión Proteica , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Aminoácidos/metabolismo , Sitios de Unión
10.
ACS Sens ; 8(9): 3389-3399, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37589910

RESUMEN

The detection of volatile organic compounds (VOCs) is an important topic for environmental safety and public health. However, the current commercial VOC detectors suffer from cross-sensitivity and low reproducibility. In this work, we present species-selective detection for VOCs using an electrochemical cell based on ionic liquid (IL) electrolytes with features of high selectivity and reliability. The voltammograms measured with the IL-based electrolyte absorbing different VOCs exhibited species-selective features that were extracted and classified by linear discriminant analysis (LDA). The detection system could identify as many as four types of VOCs, including methanol, ethanol, acetone, formaldehyde, and additional water. A mixture of methanol and formaldehyde was detected as well. The sample required for the VOCs classification system was 50 µL, or 1.164 mmol, on average. The response time for each VOC measurement is as fast as 24 s. The volume of VOCs such as formaldehyde in solution could also be quantified by LDA and electrochemical impedance spectroscopy techniques, respectively. The system showed a tunable detection range for 1.6 and 16% (w/v) CH2O solution by adjusting the composition of the electrolyte. The limit of detection was as low as 1 µL. For the 1.6% CH2O solution, the linearity calibration range was determined to be from 5.30 to 53.00 µmol with a limit of detection at 0.53 µmol. The mechanisms for VOCs determination and quantification are also thoroughly discussed. It is expected that this work could provide a new insight into the concept of electrochemical detection of VOCs with machine learning analysis and be applied to both VOCs gas monitoring and fluid detection.


Asunto(s)
Líquidos Iónicos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Reproducibilidad de los Resultados , Metanol , Acetona
11.
J Phys Chem B ; 127(14): 3175-3186, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001021

RESUMEN

Although Venezuelan equine encephalitis virus (VEEV) is a life-threatening pathogen with a capacity for epidemic outbreaks, there are no FDA-approved VEEV antivirals for humans. VEEV cytotoxicity is partially attributed to the formation of a tetrameric complex between the VEEV capsid protein, the nuclear import proteins importin-α and importin-ß, and the nuclear export protein CRM1, which together block trafficking through the nuclear pore complex. Experimental studies have identified small molecules from the CL6662 scaffold as potential inhibitors of the viral nuclear localization signal (NLS) sequence binding to importin-α. However, little is known about the molecular mechanism of CL6662 inhibition. To address this issue, we employed all-atom replica exchange molecular dynamics simulations to probe, in atomistic detail, the binding mechanism of CL6662 ligands to importin-α. Three ligands, including G281-1485 and two congeners with varying hydrophobicities, were considered. We investigated the distribution of ligand binding poses, their locations, and ligand specificities measured by the strength of binding interactions. We found that G281-1485 binds nonspecifically without forming well-defined binding poses throughout the NLS binding site. Binding of the less hydrophobic congener becomes strongly on-target with respect to the NLS binding site but remains nonspecific. However, a more hydrophobic congener is a strongly specific binder and the only ligand out of three to form a well-defined binding pose, while partially overlapping with the NLS binding site. On the basis of free energy estimates, we argue that all three ligands weakly compete with the viral NLS sequence for binding to importin-α in an apparent compromise to preserve host NLS binding. We further show that all-atom replica exchange binding simulations are a viable tool for studying ligands binding nonspecifically without forming well-defined binding poses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , alfa Carioferinas , Animales , Caballos , Humanos , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Virus de la Encefalitis Equina Venezolana/metabolismo , Simulación de Dinámica Molecular , Ligandos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Núcleo Celular/metabolismo , Sitios de Unión , Unión Proteica
12.
SLAS Discov ; 28(6): 270-274, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36921802

RESUMEN

With over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena. To enable targeted cellular delivery, and non-biomedical applications, Veneziano and colleagues have developed a synthesis strategy that enables the design of self-assembling DNA nanoparticles (DNA origami) with prescribed shape and size in the 10 to 100 nm range. The nanoparticles can be loaded with molecules of interest such as drugs, proteins and peptides, and are a promising new addition to the drug delivery platforms currently in use. The investigators also recently used the DNA origami nanoparticles to fine tune the spatial presentation of immunogens to study the impact on B cell activation. These studies are an important step towards the rational design of vaccines for a variety of infectious agents. To elucidate the parameters for optimizing the delivery efficiency of lipid nanoparticles (LNPs), Buschmann, Paige and colleagues have devised methods for predicting and experimentally validating the pKa of LNPs based on the structure of the ionizable lipids used to formulate the LNPs. These studies may pave the way for the development of new LNP delivery vehicles that have reduced systemic distribution and improved endosomal release of their cargo post administration. To better understand protein-protein interactions and identify potential drug targets that disrupt such interactions, Luchini and colleagues have developed a methodology that identifies contact points between proteins using small molecule dyes. The dye molecules noncovalently bind to the accessible surfaces of a protein complex with very high affinity, but are excluded from contact regions. When the complex is denatured and digested with trypsin, the exposed regions covered by the dye do not get cleaved by the enzyme, whereas the contact points are digested. The resulting fragments can then be identified using mass spectrometry. The data generated can serve as the basis for designing small molecules and peptides that can disrupt the formation of protein complexes involved in disease processes. For example, using peptides based on the interleukin 1 receptor accessory protein (IL-1RAcP), Luchini, Liotta, Paige and colleagues disrupted the formation of IL-1/IL-R/IL-1RAcP complex and demonstrated that the inhibition of complex formation reduced the inflammatory response to IL-1B. Working on the discovery of novel antimicrobial agents, Bishop, van Hoek and colleagues have discovered a number of antimicrobial peptides from reptiles and other species. DRGN-1, is a synthetic peptide based on a histone H1-derived peptide that they had identified from Komodo Dragon plasma. DRGN-1 was shown to disrupt bacterial biofilms and promote wound healing in an animal model. The peptide, along with others, is being developed and tested in preclinical studies. Other research by van Hoek and colleagues focuses on in silico antimicrobial peptide discovery, screening of small molecules for antibacterial properties, as well as assessment of diffusible signal factors (DFS) as future therapeutics. The above examples provide insight into the cutting-edge studies undertaken by GMU scientists to develop novel methodologies and platform technologies important to drug discovery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteína Accesoria del Receptor de Interleucina-1 , Animales , Universidades , ADN , Descubrimiento de Drogas
13.
PLoS One ; 17(9): e0274420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107941

RESUMEN

UDP-glucose dehydrogenase (UGDH) generates essential precursors of hyaluronic acid (HA) synthesis, however mechanisms regulating its activity are unclear. We used enzyme histostaining and quantitative image analysis to test whether cytokines that stimulate HA synthesis upregulate UGDH activity. Fibroblast-like synoviocytes (FLS, from N = 6 human donors with knee pain) were cultured, freeze-thawed, and incubated for 1 hour with UDP-glucose, NAD+ and nitroblue tetrazolium (NBT) which allows UGDH to generate NADH, and NADH to reduce NBT to a blue stain. Compared to serum-free medium, FLS treated with PDGF showed 3-fold higher UGDH activity and 6-fold higher HA release, but IL-1beta/TGF-beta1 induced 27-fold higher HA release without enhancing UGDH activity. In selected proliferating cells, UGDH activity was lost in the cytosol, but preserved in the nucleus. Cell-free assays led us to discover that diaphorase, a cytosolic enzyme, or glutathione reductase, a nuclear enzyme, was necessary and sufficient for NADH to reduce NBT to a blue formazan dye in a 1-hour timeframe. Primary synovial fibroblasts and transformed A549 fibroblasts showed constitutive diaphorase/GR staining activity that varied according to supplied NADH levels, with relatively stronger UGDH and diaphorase activity in A549 cells. Unilateral knee injury in New Zealand White rabbits (N = 3) stimulated a coordinated increase in synovial membrane UGDH and diaphorase activity, but higher synovial fluid HA in only 2 out of 3 injured joints. UGDH activity (but not diaphorase) was abolished by N-ethyl maleimide, and inhibited by peroxide or UDP-xylose. Our results do not support the hypothesis that UGDH is a rate-liming enzyme for HA synthesis under catabolic inflammatory conditions that can oxidize and inactivate the UGDH active site cysteine. Our novel data suggest a model where UGDH activity is controlled by a redox switch, where intracellular peroxide inactivates, and high glutathione and diaphorase promote UGDH activity by maintaining the active site cysteine in a reduced state, and by recycling NAD+ from NADH.


Asunto(s)
Sinoviocitos , Animales , Cisteína/metabolismo , Fibroblastos/metabolismo , Formazáns , Glucosa/farmacología , Glucosa Deshidrogenasas/metabolismo , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Maleimidas , NAD/metabolismo , Nitroazul de Tetrazolio , Oxidación-Reducción , Peróxidos , Conejos , Sinoviocitos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/química , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Xilosa
14.
ACS Appl Mater Interfaces ; 14(36): 40784-40792, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36049020

RESUMEN

Organic materials are competitive as anodes for Na-ion batteries (NIBs) due to the low cost, abundance, environmental benignity, and high sustainability. Herein, we synthesized three halogenated carboxylate-based organic anode materials to exploit the impact of halogen atoms (F, Cl, and Br) on the electrochemical performance of carboxylate anodes in NIBs. The fluorinated carboxylate anode, disodium 2, 5-difluoroterephthalate (DFTP-Na), outperforms the other carboxylate anodes with H, Cl, and Br, in terms of high specific capacity (212 mA h g-1), long cycle life (300 cycles), and high rate capability (up to 5 A g-1). As evidenced by the experimental and computational results, the two F atoms in DFTP reduce the solubility, enhance the cyclic stability, and interact with Na+ during the redox reaction, resulting in a high-capacity and stable organic anode material in NIBs. Therefore, this work proves that fluorinating carboxylate compounds is an effective approach to developing high-performance organic anodes for stable and sustainable NIBs.

15.
Sci Rep ; 12(1): 9443, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676292

RESUMEN

The aminopeptidase activity (AP) of the leukotriene A4 hydrolase (LTA4H) enzyme has emerged as a therapeutic target to modulate host immunity. Initial reports focused on the benefits of augmenting the LTA4H AP activity and clearing its putative pro-inflammatory substrate Pro-Gly-Pro (PGP). However, recent reports have introduced substantial complexity disconnecting the LTA4H modulator 4-methoxydiphenylmethane (4MDM) from PGP as follows: (1) 4MDM inhibits PGP hydrolysis and subsequently inhibition of LTA4H AP activity, and (2) 4MDM activates the same enzyme target in the presence of alternative substrates. Differential modulation of LTA4H by 4MDM was probed in a murine model of acute lung inflammation, which showed that 4MDM modulates the host neutrophilic response independent of clearing PGP. X-ray crystallography showed that 4MDM and PGP bind at the zinc binding pocket and no allosteric binding was observed. We then determined that 4MDM modulation is not dependent on the allosteric binding of the ligand, but on the N-terminal side chain of the peptide. In conclusion, our study revealed that a peptidase therapeutic target can interact with its substrate and ligand in complex biochemical mechanisms. This raises an important consideration when ligands are designed to explain some of the unpredictable outcomes observed in therapeutic discovery targeting LTA4H.


Asunto(s)
Epóxido Hidrolasas , Neumonía , Animales , Modelos Animales de Enfermedad , Ligandos , Ratones
16.
Nat Prod Rep ; 38(12): 2187-2213, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913051

RESUMEN

Covering: 2000-2020The 1,4-diene motif, also known as a skipped diene, is widespread across various classes of natural products including alkaloids, fatty acids, terpenoids, and polyketides as part of either the finalized structure or a biosynthetic intermediate. The prevalence of this nonconjugated diene system in nature has resulted in numerous encounters in the total synthesis literature. However, skipped dienes have not been extensively reviewed, which could be attributed to overshadowing by the more recognized 1,3-diene system. In this review, we aim to highlight the relevance of skipped dienes in natural products through the lens of total synthesis. Subjects that will be covered include nomenclature, structural properties, prevalence in natural products, synthetic strategies and the future direction of the field.


Asunto(s)
Productos Biológicos/metabolismo , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Estructura Molecular , Estereoisomerismo
18.
Commun Biol ; 4(1): 956, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381159

RESUMEN

Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.


Asunto(s)
Expresión Génica , Iones/química , Lípidos/química , Nanopartículas/química , ARN Mensajero/química , ARN Mensajero/genética , Administración Intravenosa , Animales , Composición de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Inyecciones Intramusculares , Ratones , Estructura Molecular , Nanopartículas/ultraestructura , ARN Mensajero/administración & dosificación , ARN Mensajero/farmacocinética , Análisis Espectral , Distribución Tisular , Transfección
19.
Antiviral Res ; 191: 105087, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33965437

RESUMEN

Marine microorganisms have been a resource for novel therapeutic drugs for decades. In addition to anticancer drugs, the drug acyclovir, derived from a marine sponge, is FDA-approved for the treatment of human herpes simplex virus-1 infections. Most alphaviruses that are infectious to terrestrial animals and humans, such as Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV), lack efficient antiviral drugs and it is imperative to develop these remedies. To push the discovery and development of anti-alphavirus compounds forward, this study aimed to isolate and screen for potential antiviral compounds from cultured marine microbes originating from the marine environment. Compounds from marine microbes were of interest as they are prolific producers of bioactive compounds across the spectrum of human diseases and infections. Homoseongomycin, an actinobacteria isolated from a marine sponge displayed impressive activity against VEEV from a total of 76 marine bioactive products. The 50% effective concentration (EC50) for homoseongomycin was 8.6 µM for suppressing VEEV TC-83 luciferase reporter virus replication. Homoseongomycin was non-toxic up to 50 µM and partially rescued cells from VEEV induced cell death. Homoseongomycin exhibited highly efficient antiviral activity with a reduction of VEEV infectious titers by 8 log10 at 50 µM. It also inhibited EEEV replication with an EC50 of 1.2 µM. Mechanism of action studies suggest that homoseongomycin affects both early and late stages of the viral life cycle. Cells treated with 25 µM of homoseongomycin had a ~90% reduction in viral entry. In comparison, later stages showed a more robust reduction in infectious titers (6 log10) and VEEV extracellular viral RNA levels (4 log10), but a lesser impact on intracellular viral RNA levels (1.5 log10). In sum, this work demonstrates that homoseongomycin is a potential anti-VEEV and anti-EEEV compound due to its low cytotoxicity and potent antiviral activity.


Asunto(s)
Actinobacteria/química , Antivirales/farmacología , Virus de la Encefalitis Equina del Este/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Fluorenos/farmacología , Replicación Viral/efectos de los fármacos , Animales , Organismos Acuáticos/química , Línea Celular , Chlorocebus aethiops , Humanos , Células Vero
20.
ACS Nano ; 15(2): 2413-2427, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464827

RESUMEN

One of the primary challenges in breast cancer diagnosis and treatment is intratumor heterogeneity (ITH), i.e., the coexistence of different genetically and epigenetically distinct malignant cells within the same tumor. Thus, the identification of ITH is critical for designing better treatments and hence to increase patient survival rates. Herein, we report a noninvasive hybrid imaging technology that integrates multitargeted and multiplexed patchy polymeric photoacoustic contrast agents (MTMPPPCAs) with single-impulse panoramic photoacoustic computed tomography (SIP-PACT). The target specificity ability of MTMPPPCAs to distinguish estrogen and progesterone receptor-positive breast tumors was demonstrated through both fluorescence and photoacoustic measurements and validated by tissue pathology analysis. This work provides the proof-of-concept of the MTMPPPCAs/SIP-PACT system to identify ITH in nonmetastatic tumors, with both high molecular specificity and real-time detection capability.


Asunto(s)
Neoplasias de la Mama , Técnicas Fotoacústicas , Mama , Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Humanos , Polímeros , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA